17 resultados para STRUCTURAL CHARACTERIZATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An unusual hexanuclear Cu-II complex, [{[Cu(NHDEPO)](3)(mu(3)-O)(O3ClO)}(2)(mu-H)]center dot 7ClO(4)center dot 4H(2)O (1) was prepared starting from Cu(ClO4)(2)center dot 6H(2)O and the oxime-based Schiff base ligand NHDEPO (= 3-[3-(diethylamino)propylimino]butan-2-one oxime). Structural characterization of the complex reveals that it consists of two triangular Cu3O units, the copper ions being at the corners of an equilateral triangle, separated by an O center dot center dot center dot O distance of 2,447(5) angstrom, held together solely by a proton. In each triangle, the copper atoms are in square-pyramid environments. The equatorial plane consists of the bridging oxygen of the central OH-(O2-) group together with three atoms (N, N, O) of the Schiff base. All Unusual triply coordinated perchlorate ion (mu(3)-kappa O:kappa O':kappa O '') interacts in axial position with the three copper ions, Variable-temperature (2-300 K) magnetic susceptibility measurements show that complex 1 is antiferromagnetically Coupled (J = -148 cm(1-)). The EPR data at low temperature clearly indicates the presence of spin frustration phenomenon in the complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structural characterization of subtilisin mesoscale clusters, which were previously shown to induce supramolecular order in biocatalytic self-assembly of Fmocdipeptides, was carried out by synchrotron small-angle X-ray, dynamic, and static light scattering measurements. Subtilisin molecules self-assemble to form supramolecular structures in phosphate buffer solutions. Structural arrangement of subtilisin clusters at 55 degrees Centigrade was found to vary systematically with increasing enzyme concentration. Static light scattering measurements showed the cluster structure to be consistent with a fractal-like arrangement, with fractal dimension varying from 1.8 to 2.6 with increasing concentration for low to moderate enzyme concentrations. This was followed by a structural transition around the enzyme concentration of 0.5 mg mL-1 to more compact structures with significantly slower relaxation dynamics, as evidenced by dynamic light scattering measurements. These concentration-dependent supramolecular enzyme clusters provide tunable templates for biocatalytic self-assembly.