110 resultados para STAT ACTIVATION
Resumo:
Reaction of a group of N-(2'-hydroxyphenyl)benzaldimines, derived from 2-aminophenol and five para-substituted benzaldehydes (the para substituents are OCH3, CH3, H, Cl and NO2), with [Rh(PPh3)(3)Cl] in refluxing toluene in the presence of a base (NEW afforded a family of organometallic complexes of rhodium(III). The crystal structure of one complex has been determined by X-ray crystallography. In these complexes the benzaldimine ligands are coordinated to the metal center, via dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring in the imine fragment, as dianionic tridentate C,N,O-donors, and the two PPh3 ligands are trans. The complexes are diamagnetic (low-spin d(6), S = 0) and show intense MLCT transitions in the visible region. Cyclic voltammetry shows a Rh(III)-Rh(IV) oxidation within 0.63-0.93 V vs SCE followed by an oxidation of the coordinated benzaldimine ligand. A reduction of the coordinated benzaldimine is also observed within -0.96 to -1.04 V vs SCE. Potential of the Rh(Ill)-Rh(IV) oxidation is found to be sensitive to the nature of the para-substituent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
PDGF is a potent chemotactic mitogen and a strong inductor of fibroblast motility. In Swiss 3T3 fibroblasts, exposure to PDGF but not EGF or IGF-1 causes a rapid loss of actin stress fibers (SFs) and focal adhesions (FAs), which is followed by the development of retractile dendritic protrusions and induction of motility. The PDGF-specific actin reorganization was blocked by inhibition of Src-kinase and the 26S proteasome. PDGF induced Src-dependent association between the multifunctional transcription/translation regulator hnRNP-K and the mRNA-encoding myosin regulatory light-chain (MRLC)-interacting protein (MIR), a E3-ubiquitin ligase that is MRLC specific. This in turn rapidly increased MIR expression, and led to ubiquitination and proteasome-mediated degradation of MRLC. Downregulation of MIR by RNA muting prevented the reorganization of actin structures and severely reduced the migratory and wound-healing potential of PDGF-treated cells. The results show that activation of MIR and the resulting removal of diphosphorylated MRLC are essential for PDGF to instigate and maintain control over the actin-myosin-based contractile system in Swiss 3T3 fibroblasts. The PDGF induced protein destabilization through the regulation of hnRNP-K controlled ubiquitin-ligase translation identifies a novel pathway by which external stimuli can regulate phenotypic development through rapid, organelle-specific changes in the activity and stability of cytoskeletal regulators.
Resumo:
The structural and reactive properties of the acetyl-protected "one-legged" manganese porphyrin [SAc]P-Mn(III)Cl on Ag(100) have been studied by NEXAFS, synchrotron XPS and STM Spontaneous surface-mediated deprotection occurs at 300 K accompanied by spreading of the resulting thio-tethered porphyrin across the metal surface Loss of the axial chlorine ligand occurs at 498 K, without any demetalation of the macrocycle, leaving the Mn center in a low co-ordination state At low coverages the macrocycle is markedly tilted toward the silver surface, as is the phenyl group that forms part of the tethering "leg". In the monolayer region a striking transition occurs whereby the molecule rolls over, preserving the tilt angle of the phenyl group, strongly increasing that of the macrocycle, decreasing the apparent height of the molecule and decreasing its footprint, thus enabling closer packing These findings are in marked contrast with those previously reported for the corresponding more rigidly bound four-legged porphyrin [Turner, M., Vaughan, O. P. H., Kyriakou, G., Watson, D. J., Scherer, L. J; Davidson, G J. E, Sanders, J. K. M.; Lambert, R. M J. Am. Chem Soc 2009, 131, 1910] suggesting that the physicochemical :)properties and potential applications of these versatile systems should be strongly dependent on the mode of tethering to the surface.
Resumo:
The adsorption and subsequent thermal chemistry of the acetyl-protected manganese porphyrin, [SA(C)](4)P-Mn(III)Cl on Ag(100) have been studied by high resolution XPS and temperature-programmed desorption. The deprotection event, leading to formation of the covalently bound thioporphyrin, has been characterized and the conditions necessary for removal of the axial chlorine ligand have been determined, thus establishing a methodology for creating tethered activated species that could serve as catalytic sites for delicate oxidation reactions. Surface-mediated acetyl deprotection occurs at 298 K, at which temperature porphyrin diffusion is limited. At temperatures above similar to 425 K porphyrin desorption, diffusion and deprotection occur and at >470 K the axial chlorine is removed.
Resumo:
There is growing interest in the potential beneficial effects of flavonoids in the aging and diseased brain. We have investigated the potential of the flavanone hesperetin and two of its metabolites, hesperetin-7-O-beta-D-glucuronide and 5-nitro-hesperetin, to inhibit oxidative stress-induced neuronal apoptosis. Exposure of cortical neurons to hydrogen peroxide led to the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser963, the phosphorylation of c-jun N-terminal kinase and c-Jun (Ser73) and the activation of caspase 3 and caspase 9. Whilst hesperetin glucuronide failed to exert protection, both hesperetin and 5-nitro-hesperetin were effective at preventing neuronal apoptosis via a mechanism involving the activation/phosphorylation of both Akt/protein kinase B and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Protection against oxidative injury and the activation of Akt and ERK1/2 followed a bell-shaped response and was most apparent at 100 nmol/L concentrations. The activation of ERK1/2 and Akt by flavanones led to the inhibition of the pro-apoptotic proteins, apoptosis signal-regulating kinase 1, by phosphorylation at Ser83 and Bad, by phosphorylation at both Ser136 and Ser112 and to the inhibition of peroxide-induced caspase 9 and caspase 3 activation. Thus, flavanones may protect neurons against oxidative insults via the modulation of neuronal apoptotic machinery.
Resumo:
The cellular actions of genistein, and its in vivo metabolites, are believed to mediate the decreased risk of breast cancer associated with high soy consumption. The genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone (THIF), induced G2-M cell cycle arrest in T47D tumorigenic breast epithelial cells via a mechanism involving the activation of ataxia telangiectasia and Rad3-related kinase (ATR) via its phosphorylation at Ser(428). This activation of ATR appeared to result from THIF-induced increases in intracellular oxidative stress, a depletion of cellular GSH and an increase in DNA strand breakage. THIF treatment also led to an inhibition of cdc2, which was accompanied by the phosphorylation of both p53 (Ser(15)) and Chk1 (Ser(296)) and the de-activation of cdc25C phosphatase. We suggest the anti-proliferative actions of THIF may be mediated by initial oxidative DNA damage, activation of ATR and downstream regulation of the p53 and Chk1 pathways leading to cell cycle arrest in G2-M. This may represent one mechanism by which genistein exerts its cellular activity in vivo. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated the effects of substituting dietary saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) on postprandial chylomicron (triacylglycerol (TAG), apolipoprotein B-48 (apo B-48) and retinyl ester (RE)), chylomicron particle size and factor VII (FVII) response when subjects were given a standard meal. In a controlled sequential design, 51 healthy young subjects followed an SFA-rich diet (Reference diet) for 8 weeks after which half of the subjects followed a moderate MUFA diet (n = 25) and half followed a high MUFA diet (n = 26) for 16 weeks. Fasting lipoprotein and lipid measurements were evaluated at baseline and at 8-week intervals during the Reference and MUFA diets. In 25 of the subjects (n = 12 moderate MUFA, n = 13 high MUFA), postprandial responses to a standard test meal containing RE and 13 C-tripalmitin were investigated at the end of the Reference and the MUFA diet periods. Although there were no differences in the postprandial lipid markers (TAG, RE, C-13-TAG) on the two diets, the postprandial apo B-48 response (incremental area under the curve (IAUC) was reduced by 21% on the moderate MUFA diet (NS) and by 54% on the high MUFA diet (P < 0.01). The postprandial peak concentrations of apo B-48 were reduced by 33% on the moderate MUFA diet (P < 0.01) and 48% on the high MUFA diet (P < 0.001). Fasting values for factor VII activity (FVIIc), activated factor VII (FVIIa) or factor VII antigen (FVIIag) did not differ significantly when subjects were transferred from Reference to MUFA diets. However, the postprandial increases in coagulation FVII activity (FVIIc) were 18% lower and of activated FVII (FVIIa) were 17% lower on the moderate MUFA diet (NS). Postprandial increases in FVIIc and FVIIa were 50% (P < 0.05) and 29% (P < 0.07) lower on the high MUFA diet and the area under the postprandial FVIIc response curve (AUC) was also lower on the high MUFA diet (P < 0.05). Significantly higher ratios of RE:apo B-48 (P < 0.001) and 13 C-palmitic acid:apo B-48 (P < 0.01) during both MUFA diets suggest that the CMs formed carry larger amounts of dietary lipids per particle, reflecting an adaptation to form larger lipid droplets in the enterocyte when increased amounts of dietary MUFAs are fed. Smaller numbers of larger chylomicrons may explain attenuated activation of factor VII during the postprandial state when the background diet is rich in MUFA. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Background: Quercetin, a flavonoid present in the human diet, which is found in high levels in onions, apples, tea and wine, has been shown previously to inhibit platelet aggregation and signaling in vitro. Consequently, it has been proposed that quercetin may contribute to the protective effects against cardiovascular disease of a diet rich in fruit and vegetables. Objectives: A pilot human dietary intervention study was designed to investigate the relationship between the ingestion of dietary quercetin and platelet function. Methods: Human subjects ingested either 150 mg or 300 mg quercetin-4'-O-beta-D-glucoside Supplement to determine the systemic availability of quercetin. Platelets were isolated from subjects to analyse collagen-stimulated cell signaling and aggregation. Results: Plasma quercetin concentrations peaked at 4.66 mum (+/-0.77) and 9.72mum (+/-1.38) 30min after ingestion of 150-mg and 300-mg doses of quercefin-4'-O-beta-D-glucoside, respectively, demonstrating that quercetin was bioavailable, with plasma concentrations attained in the range known to affect platelet function in vitro. Platelet aggregation was inhibited 30 and 120 min after ingestion of both doses of quercetin-4'-O-beta-D-glucoside. Correspondingly, collagen-stimulated tyrosine phosphorylation of total platelet proteins was inhibited. This was accorripanied by reduced tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2, components of the platelet glycoprotein VI collagen receptor signaling pathway. Conclusions: This study provides new evidence of the relatively high systemic availability of quercetin in the form of quercetin-4'-O-beta-D-glucoside by supplementation, and implicates quercetin as a dietary inhibitor of platelet cell signaling and thrombus formation.
Resumo:
Background: The regulation of platelet function by pharmacological agents that modulate platelet signaling haspharmacolo proven a successful approach to the prevention of thrombosis. A variety of molecules present in the diet have been shown to inhibit platelet activation, including the antioxidant quercetin. Objectives: In this report we investigate the molecular mechanisms through which quercetin inhibits collagen-stimulated platelet aggregation. Methods: The effect of quercetin on platelet aggregation, intracellular calcium release, whole cell tyrosine phosphorylation and intracellular signaling events including tyrosine phosphorylation and kinase activity of proteins involved in the collagen-stimulated glycoprotein (GP) signaling pathway were investigated. Results: We report that quercetin inhibits collagen-stimulated whole cell protein tyrosine phosphorylation and intracellular mobilization of calcium, in a concentration-dependent manner. Quercetin was also found to inhibit various events in signaling generated by the collagen receptor GPVI. This includes collagen-stimulated tyrosine phosphorylation of the Fc receptor gamma-chain, Syk, LAT and phospholipase Cgamma2. Inhibition of phosphorylation of the Fc receptor gamma-chain suggests that quercetin inhibits early signaling events following stimulation of platelets with collagen. The activity of the kinases that phosphorylate the Fc receptor gamma-chain, Fyn and Lyn, as well as the tyrosine kinase Syk and phosphoinositide 3-kinase was also inhibited by quercetin in a concentration-dependent manner, both in whole cells and in isolation. Conclusions: The present results provide a molecular basis for the inhibition by quercetin of collagen-stimulated platelet activation, through inhibition of multiple components of the GPVI signaling pathway, and may begin to explain the proposed health benefits of high quercetin intake.
Resumo:
Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of gamma-glutamylcysteine synthetase-heavy subunit (gamma-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Lactoperoxidase (LP) exerts antimicrobial effects in combination with H2O2 and either thiocyanate (SCN-) or a halide (e. g., I-). Garlic extract in the presence of ethanol has also been used to activate the LP system. This study aimed to determine the effects of 3 LP activation systems (LP+SCN-+H2O2; LP+I-+H2O2; LP + garlic extract + ethanol) on the growth and activity of 3 test organisms (Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus cereus). Sterilized milk was used as the reaction medium, and the growth pattern of the organisms and a range of keeping quality (KQ) indicators (pH, titratable acidity, ethanol stability, clot on boiling) were monitored during storage at the respective optimum growth temperature for each organism. The LP+I-+H2O2 system reduced bacterial counts below the detection limit shortly after treatment for all 3 organisms, and no bacteria could be detected for the duration of the experiment (35 to 55 h). The KQ data confirmed that the milk remained unspoiled at the end of the experiments. The LP + garlic extract + ethanol system, on the other hand, had no effect on the growth or KQ with P. aeruginosa, but showed a small retardation of growth of the other 2 organisms, accompanied by small increases (5 to 10 h) in KQ. The effects of the LP+SCN-+H2O2 system were intermediate between those of the other 2 systems and differed between organisms. With P. aeruginosa, the system exerted total inhibition within 10 h of incubation, but the bacteria regained viability after a further 5 h, following a logarithmic growth curve. This was reflected in the KQ indicators, which implied an extension of 15 h. With the other 2 bacterial species, LP+SCN-+H2O2 exerted an obvious inhibitory effect, giving a lag phase in the growth curve of 5 to 10 h and KQ extension of 10 to 15 h. When used in combination, I- and SCN- displayed negative synergy.
Resumo:
Thiocyanate content and lactoperoxidase activity of individual cow's milk of different breeds were determined, and the effects of different lactoperoxidase system (LP-s) activation strategies were compared. Lactoperoxidase activity varied significantly between Friesian and both Ayrshire and Tanzania Short Horn Zebu (TSHZ), but differences between Ayrshire and TSHZ were not significant. There was no significant variation in SCN- content between breeds. The LP-s was activated using three strategies based on SCN-: namely; equal concentrations of SCN- and H2O2 (7:7, 10:10, 15 :15 mg/l), excess SCN- concentrations (15:10, 20:10, 25:10 mg SCN-: H2O2/I), and excess H2O2 concentrations (10:15, 10:20, 10:25 mg SCN-: H2O2/I), plus a fourth strategy based on I- (15 : 15 mg I- : H2O2/I). The keeping quality (KQ) was assessed using pH, titratable acidity, clot on boiling and alcohol stability tests. All activation strategies enhanced the shelf life of milk (typically increasing KQ from around 10 to around 20 h), but it was clear that the effectiveness of the LP-s depends on the type and concentrations of the activators of the system. The LP-s activated using I- as an electron donor was more effective than the LP-s activated using SCN- as an electron donor, increasing the KQ by a further 6-8 h compared with SCN-.
Resumo:
Dietary flavonoids, including the citrus flavanone hesperetin, may have stimulatory, effects on cytoprotective intracellular signalling pathways. In primary mouse cortical neurone cultures, but not SH-SY5Y human neuroblastoma cells or human primary dermal fibroblasts (Promocells), hesperetin (100-300 nM, 15 min) caused significant increases in the level of ERK1/2 phosphorylation, but did not increase CREB phosphorylation. Administration of hesperetin for 18 h did not alter gene expression driven by the cyclic AMP response element (CRE), assessed using a luciferase reporter system, but 300 nM hesperetin partially reversed staurosporine-induced cell death in primary neurones. Our data show that hesperetin is a neuroprotective compound at concentrations where antioxidant effects are unlikely to predominate. The effects of hesperetin are cell-type dependent and, unlike the flavanol (-)epicatechin, neuroprotection in vitro is not associated with enhanced CREB phosphorylation or CRE-mediated gene expression. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and purpose: The aim of this report is to study mechanisms of G protein activation by agonists. Experimental approach: The association and dissociation of guanosine 5'-O-(3-[S-35] thio) triphosphate ([S-35] GTP gamma S) binding at G proteins in membranes of CHO cells stably transfected with the human dopamine D-2short receptor was studied in the presence of a range of agonists. Key results: Binding of [S-35] GTPgS was dissociable in the absence of agonist and dissociation was accelerated both in rate and extent by dopamine, an effect which was blocked by the dopamine D-2 receptor antagonist raclopride and by suramin, which inhibits receptor/G protein interaction. A range of agonists of varying efficacy increased the rate of dissociation of [S-35] GTPgS binding, with the more efficacious agonists resulting in faster dissociation. Agonists were able to dissociate about 70% of the pre-bound [S-35] GTPgS, leaving a component which may not be accessible to the agonist-bound receptor. The dissociable component of the [S-35] GTPgS binding was reduced with longer association times and increased [S-35] GTPgS concentrations. Conclusions and implications: These data are consistent with [S-35] GTPgS binding being initially to receptor-linked G proteins and then to G proteins which have separated from the agonist bound receptor. Under the conditions used typically for [S-35] GTPgS binding assays, therefore, much of the agonist-receptor complex remains in proximity to G proteins after they have been activated by agonist.
Resumo:
Homologous desensitization of beta(2)-adrenergic receptors has been shown to be mediated by phosphorylation of the agonist-stimulated receptor by G-protein-coupled receptor kinase 2 (GRK2) followed by binding of beta-arrestins to the phosphorylated receptor. Binding of beta-arrestin to the receptor is a prerequisite for subsequent receptor desensitization, internalization via clathrin-coated pits, and the initiation of alternative signaling pathways. In this study we have investigated the interactions between receptors and beta-arrestin2 in living cells using fluorescence resonance energy transfer. We show that (a) the initial kinetics of beta-arrestin2 binding to the receptor is limited by the kinetics of GRK2-mediated receptor phosphorylation; (b) repeated stimulation leads to the accumulation of GRK2-phosphorylated receptor, which can bind beta-arrestin2 very rapidly; and (c) the interaction of beta-arrestin2 with the receptor depends on the activation of the receptor by agonist because agonist withdrawal leads to swift dissociation of the receptor-beta-arrestin2 complex. This fast agonist-controlled association and dissociation of beta-arrestins from prephosphorylated receptors should permit rapid control of receptor sensitivity in repeatedly stimulated cells such as neurons.