22 resultados para SODIUM IODIDES
Resumo:
The objective of this study was to determine the concentration of total selenium (Se) and proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the tissues of female turkeys offered diets containing graded additions of selenized-enriched yeast (SY), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of breast and thigh muscle were assessed at 0 and 10 days post mortem. A total of 216 female turkey poults were enrolled in the study. A total of 24 birds were euthanized at the start of the study and samples of blood, breast, thigh, heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments(n548 birds/treatment) that differed either in Se source (SY v. SS) or dose (Con [0.2 mg/kg total Se], SY-L and SS-L [0.3mg/kg total Se as SY and SS, respectively] and SY-H [0.45mg total Se/kg]). Following 42 and 84 days of treatment 24 birds per treatment were euthanized and samples of blood, breast, thigh, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in breast and thigh tissue at the end of the study. There were responses (P,0.001) in all tissues to the graded addition of dietary Se, although rates of accumulation were highest in birds offered SY. There were notable differences between tissue types and treatments in the distribution of SeMet and SeCys, and the activity of tissue and erythrocyte GSH-Px (P,0.05). SeCys was the predominant form of Se in visceral tissue and SeMet the predominant form in breast tissue. SeCys contents were greater in thigh when compared with breast tissue. Muscle tissue GSH-Px activities mirrored SeCys contents. Despite treatment differences in tissue GSH-Px activity, there were no effects of treatment on any meat quality parameter.
Resumo:
The complex [(C(NH2)3)3ZrOH(CO3)3·H2O]2 (A) has been shown by means of a single crystal X-ray diffraction study to contain [C(NH2)3]+ cations and dimeric anions of formulation [(ZrOH(CO3)3)2]6−. The anion is centrosymmetric with each metal being bonded to two bridging OH groups and three chelating CO2−3 ions. The Zr atoms are thus eight coordinate with a dodecahedral environments. The ZrO distances formed by the bridgng OH groups are shorter than those formed through zirconiu carbonate interactions. The non-bonded Zr…Zr distance is 3.47(2) Å. An infrared spectroscopic investigation of A provides data which support the findings of the crystallographic study. Likewise the complex Na6(ZrOH(CO2O4)3)2·7H2O (B) contains the anion [(ZrOH(C2O4)3)2]6−. This anion is structurally related to the anion in A as each Zr atom has an eight-coordinate dodecahedral environment being bonded to two bridging OH groups and three chelating oxalate ligands, but has no imposed crysallographic symmetry. The Zr…Zr non-bonded distance is 3.50(1) Å. The OZrO bridge angles are 69.7(4)° and A and 67.4(3)° in B.
Resumo:
Hydrogels consisting of sodium alginate and N-isopropylacrylamide covalently crosslinked with N,N′-methylenebisacrylamide were prepared. The mixed-interpenetrated networks obtained were characterized using elemental analysis, Fourier transform infrared and Raman spectroscopy, swelling measurements and environmental scanning electron microscopy. The thermo- and pH-responsive properties of these hydrogels were evidenced by their swelling behaviour, which depended also on the amount of crosslinking agent and hydrogel composition.
Resumo:
The synthesis of two new sodium perchlorate adducts (1:2 and 1:3) with copper(II) "ligand-complexes'' is reported. One adduct is trinuclear [(CuL(1))(2)NaClO(4)] (1) and the other is tetranuclear [(CuL(2))(3)Na]ClO(4)center dot EtOH (2). The ligands are the tetradentate di-Schiff base of 1,3-propanediamines and salicylaldehyde (H(2)L(1)) or 2-hydroxyacetophenone (H(2)L(2)). Both complexes have been characterized by X-ray single crystal structure analyses. In both structures, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes in addition to a chelated perchlorate anion in 1 and to six oxygen atoms from three Schiff-base complexes in 2. We have carried out a DFT theoretical study (RI-B97-D/def2-SVP level of theory) to compute and compare the formation energies of 1:2 and 1:3 adducts. The DFT study reveals that the latter is more stabilized than the former. The X-ray crystal structure of 1 shows that the packing of the trinuclear unit is controlled by unconventional C-H center dot center dot center dot O H-bonds and Cu(2+)-pi non-covalent interactions. These interactions explain the formation of 1 which is a priori disfavored with respect to 2.
Resumo:
Cannabidiol (CBD) is a non-psychoactive, well-tolerated, anticonvulsant plant cannabinoid, although its mechanism(s) of seizure suppression remains unknown. Here, we investigate the effect of CBD and the structurally similar cannabinoid, cannabigerol (CBG), on voltage-gated Na+ (NaV) channels, a common anti-epileptic drug target. CBG’s anticonvulsant potential was also assessed in vivo. CBD effects on NaV channels were investigated using patch-clamp recordings from rat CA1 hippocampal neurons in brain slices, human SH-SY5Y (neuroblastoma) cells and mouse cortical neurons in culture. CBG effects were also assessed in SH-SY5Y cells and mouse cortical neurons. CBD and CBG effects on veratridine-stimulated human recombinant NaV1.1, 1.2 or 1.5 channels were assessed using a membrane potential-sensitive fluorescent dye high-throughput assay. The effect of CBG on pentyleneterazole-induced (PTZ) seizures was assessed in rat. CBD (10M) blocked NaV currents in SH-SY5Y cells, mouse cortical neurons and recombinant cell lines, and affected spike parameters in rat CA1 neurons; CBD also significantly decreased membrane resistance. CBG blocked NaV to a similar degree to CBD in both SH-SY5Y and mouse recordings, but had no effect (50-200mg/kg) on PTZ-induced seizures in rat. CBD and CBG are NaV channel blockers at micromolar concentrations in human and murine neurons and recombinant cells. In contrast to previous reports investigating CBD, CBG had no effect upon PTZ-induced seizures in rat, indicating that NaV blockade per se does not correlate with anticonvulsant effects.
Resumo:
Overcoming the natural defensive barrier functions of the eye remains one of the greatest challenges of ocular drug delivery. Cornea is a chemical and mechanical barrier preventing the passage of any foreign bodies including drugs into the eye, but the factors limiting penetration of permeants and nanoparticulate drug delivery systems through the cornea are still not fully understood. In this study, we investigate these barrier properties of the cornea using thiolated and PEGylated (750 and 5000 Da) nanoparticles, sodium fluorescein, and two linear polymers (dextran and polyethylene glycol). Experiments used intact bovine cornea in addition to bovine cornea de-epithelialized or tissues pretreated with cyclodextrin. It was shown that corneal epithelium is the major barrier for permeation; pretreatment of the cornea with β-cyclodextrin provides higher permeation of low molecular weight compounds, such as sodium fluorescein, but does not enhance penetration of nanoparticles and larger molecules. Studying penetration of thiolated and PEGylated (750 and 5000 Da) nanoparticles into the de-epithelialized ocular tissue revealed that interactions between corneal surface and thiol groups of nanoparticles were more significant determinants of penetration than particle size (for the sizes used here). PEGylation with polyethylene glycol of a higher molecular weight (5000 Da) allows penetration of nanoparticles into the stroma, which proceeds gradually, after an initial 1 h lag phase.
Resumo:
Little information exists on the effects of ensiling on condensed tannins or proanthocyanidins. The acetone–butanol–HCl assay is suitable for measuring proanthocyanidin contents in a wide range of samples, silages included, but provides limited information on proanthocyanidin composition, which is of interest for deciphering the relationships between tannins and their bioactivities in terms of animal nutrition or health. Degradation with benzyl mercaptan (thiolysis) provides information on proanthocyanidin composition, but proanthocyanidins in several sainfoin silages have proved resistant to thiolysis. We now report that a pretreatment step with sodium hydroxide prior to thiolysis was needed to enable their analysis. This alkaline treatment increased their extractability from ensiled sainfoin and facilitated especially the release of larger proanthocyanidins. Ensiling reduced assayable proanthocyanidins by 29%, but the composition of the remaining proanthocyanidins in silage resembled that of the fresh plants.