36 resultados para SAMALL ANGLE SCATTERING


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A straightforward procedure (assuming spherical symmetry) is described, which enables the unwanted small-angle component of the scattering for a finite model to be calculated. The method may be applied to models of any shape or size. It is illustrated by means of a single polymer chain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The wide angle X-ray scattering from glassy poly(2-hydroxyethyl methacrylate) (1) is presented together with that obtained from oriented and swollen samples. The scattering is compared with that previously reported for poly(methyl methacrylate) (PMMA) and the structure discussed in relation to this polymer. The chain conformation is similar to that of PMMA, although some measure of molecular interlocking appears to reduce the main interchain peak while correlated regions of inaccessible free volume between the substantial side groups are held responsible for the main peak at s = 1,25 Å−1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A systematic approach is presented for obtaining cylindrical distribution functions (CDF's) of noncrystalline polymers which have been oriented by extension. The scattering patterns and CDF's are also sharpened by the method proposed by Deas and by Ruland. Data from atactic poly(methyl methacrylate) and polystyrene are analysed by these techniques. The methods could also be usefully applied to liquid crystals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A procedure is presented for obtaining conformational parameters from oriented but non-crystalline polymers. This is achieved by comparison of the experimental wide angle X-ray scattering with that calculated from models but in such a way that foreknowledge of the orientation distribution function is not required. X-ray scattering intensity values for glassy isotactic poly(methylmethacrylate) are analysed by these techniques. The method could be usefully applied to other oriented molecular systems such as liquid crystalline materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lipid cubic phases are complex nanostructures that form naturally in a variety of biological systems, with applications including drug delivery and nanotemplating. Most X-ray scattering studies on lipid cubic phases have used unoriented polydomain samples as either bulk gels or suspensions of micrometer-sized cubosomes. We present a method of investigating cubic phases in a new form, as supported thin films that can be analyzed using grazing incidence small-angle X-ray scattering (GISAXS). We present GISAXS data on three lipid systems: phytantriol and two grades of monoolein (research and industrial). The use of thin films brings a number of advantages. First, the samples exhibit a high degree of uniaxial orientation about the substrate normal. Second, the new morphology allows precise control of the substrate mesophase geometry and lattice parameter using a controlled temperature and humidity environment, and we demonstrate the controllable formation of oriented diamond and gyroid inverse bicontinuous cubic along with lamellar phases. Finally, the thin film morphology allows the induction of reversible phase transitions between these mesophase structures by changes in humidity on subminute time scales, and we present timeresolved GISAXS data monitoring these transformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospinning is a method used to produce nanoscale to microscale sized polymer fibres. In this study we electrospin 1:1 blends of deuterated and hydrogenated atactic-Polystyrene from N,N-Dimethylformamide for small angle neutron scattering experiments in order to analyse the chain conformation in the electrospun fibres. Small angle neutron scattering was carried out on randomly orientated fibre mats obtained using applied voltages of 10kV-15kV and needle tip to collector distances of 20cm and 30cm. Fibre diameters varied from 3mm - 20mm. Neutron scattering data from fibre samples were compared with bulk samples of the same polymer blend. The scattering data indicates that there are pores and nanovoiding present in the fibres; this was confirmed by scanning electron microscopy. A model that combines the scattering from the pores and the labelled polymer chains was used to extract values for the radius of gyration. The radius of gyration in the fibres is found to vary little with the applied voltage, but varies with the initial solution concentration and fibre diameter. The values for the radius of gyration in the fibres are broadly equivalent to that of the bulk state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization of well-defined poly(L-lactide)-b-poly(epsilon-caprolactone) diblock copolymers, PLLA-b-PCL, was investigated by time-resolved X-ray techniques, polarized optical microscopy (POM), and differential scanning calorimetry (DSC). Two compositions were studied that contained 44 and 60 wt % poly(L-lactide), PLLA (they are referred to as (L44C5614)-C-11 and (L60C409)-C-12, respectively, with the molecular weight of each block in kg/mol as superscript). The copolymers were found to be initially miscible in the melt according to small-angle X-ray scattering measurements (SAXS). Their thermal behavior was also indicative of samples whose crystallization proceeds from a mixed melt. Sequential isothermal crystallization from the melt at 100 degreesC (for 30 min) and then at 30 degreesC (for 15 min) was measured. At 100 degreesC only the PLLA block is capable of crystallization, and its crystallization kinetics was followed by both WAXS and DSC; comparable results were obtained that indicated an instantaneous nucleation with three-dimensional superstructures (Avrami index of approximately 3). The spherulitic nature of the superstructure was confirmed by POM. When the temperature was decreased to 30 degreesC, the PCL block was able to crystallize within the PLLA negative spherulites (with an Avrami index of 2, as opposed to 3 in homo-PCL), and its crystallization rate was much slower than an equivalent homo-PCL. Time-resolved SAXS experiments in (L60C409)-C-12 revealed an initial melt mixed morphology at 165 degreesC that upon cooling transformed into a transient microphase-separated lamellar structure prior to crystallization at 100 degreesC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospinning is a method used to produce nanoscale to microscale sized polymer fibres. In this study we electrospin 1:1 blends of deuterated and hydrogenated atactic- Polystyrene from N,N-Dimethylformamide for small angle neutron scattering experiments in order to analyse the chain conformation in the electrospun fibres. Small angle neutron scattering was carried out on randomly orientated fibre mats obtained using applied voltages of 10kV-15kV and needle tip to collector distances of 20cm and 30cm. Fibre diameters varied from 3μm – 20μm. Neutron scattering data from fibre samples were compared with bulk samples of the same polymer blend. The scattering data indicates that there are pores and nanovoiding present in the fibres; this was confirmed by scanning electron microscopy. A model that combines the scattering from the pores and the labelled polymer chains was used to extract values for the radius of gyration. The radius of gyration in the fibres is found to vary little with the applied voltage, but varies with the initial solution concentration and fibre diameter. The values for the radius of gyration in the fibres are broadly equivalent to that of the bulk state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the effect of sample hydration on the wide-angle X-ray scattering patterns of amyloid fibrils from two different sources, hen egg white lysozyme (HEWL) and an 11-residue peptide taken from the sequence of transthyretin (TTR105-115). Both samples show an inter-strand reflection at 4.7 Å and an inter-sheet reflection which occurs at 8.8 and 10 Å for TTR105-115 and HEWL fibrils, respectively. The positions, widths, and relative intensities of these reflections are conserved in patterns obtained from dried stalks and hydrated samples over a range of fibril concentrations. In 2D scattering patterns obtained from flow-aligned hydrated samples, the inter-strand and inter-sheet reflections showed, respectively, axial and equatorial alignment relative to the fibril axis, characteristic of the cross-β structure. Our results show that the cross-β structure of the fibrils is not a product of the dehydrating conditions typically employed to produce aligned samples, but is conserved in individual fibrils in hydrated samples under dilute conditions comparable to those associated with other biophysical and spectroscopic techniques. This suggests a structure consisting of a stack of two or more sheets whose interfaces are inaccessible to bulk water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular orientation parameters have been measured for the non-crystalline component of crosslinked natural rubber samples deformed in uniaxial tension as a function of the extension ratio and of temperature. The orientation parapeters 〈P2(cosα)〉 and 〈P4(cosα)〉 were obtained by an analysis of the anisotropy of the wide-angle X-ray scattering functions. For the measurements made at high temperatures the level of crystallinity detected was negligible and the orientation-strain behaviour could be compared directly with the predictions of molecular models of rubber elasticity. The molecular orientation behaviour with strain was found to be at variance with the estimates of the affine model particularly at low and moderate strains. Extension of the crosslinked rubber at room temperature led to strain-crystallization and measurements of both the molecular orientation of the non-crystalline chains and the degree of crystallinity during extension and relaxation enabled the role of the crystallites in the deformation process to be considered in detail. The intrinsic birefringence of the non-crystalline component was estimated, through the use of the 〈P2(cosα)〉 values obtained from X-ray scattering measurements, to be 0.20±0.02.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental method is described which enables the inelastically scattered X-ray component to be removed from diffractometer data prior to radial density function analysis. At each scattering angle an energy spectrum is generated from a Si(Li) detector combined with a multi-channel analyser from which the coherently scattered component is separated. The data obtained from organic polymers has an improved signal/noise ratio at high values of scattering angle, and a commensurate enhancement of resolution of the RDF at low r is demonstrated for the case of PMMA (ICI `Perspex'). The method obviates the need for the complicated correction for multiple scattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure is presented for obtaining full molecular orientation information from wide angle X-ray scattering patterns of deformed non-crystalline polymers. The method is based on the analysis of experimental and calculated scattering patterns into their spherical harmonics. The results obtained for PMMA are compared with values predicted by the pseudo affine and affine deformation schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-dimensional X-ray scattering system developed around a CCD-based area detector is presented, both in terms of hardware employed and software designed and developed. An essential feature is the integration of hardware and software, detection and sample environment control which enables time-resolving in-situ wide-angle X-ray scattering measurements of global structural and orientational parameters of polymeric systems subjected to a variety of controlled external fields. The development and operation of a number of rheometers purpose-built for the application of such fields are described. Examples of the use of this system in monitoring degrees of shear-induced orientation in liquid-crystalline systems and crystallization of linear polymers subsequent to shear flow are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach to the study of the local organization in amorphous polymer materials is presented. The method couples neutron diffraction experiments that explore the structure on the spatial scale 1–20 Å with the reverse Monte Carlo fitting procedure to predict structures that accurately represent the experimental scattering results over the whole momentum transfer range explored. Molecular mechanics and molecular dynamics techniques are also used to produce atomistic models independently from any experimental input, thereby providing a test of the viability of the reverse Monte Carlo method in generating realistic models for amorphous polymeric systems. An analysis of the obtained models in terms of single chain properties and of orientational correlations between chain segments is presented. We show the viability of the method with data from molten polyethylene. The analysis derives a model with average C-C and C-H bond lengths of 1.55 Å and 1.1 Å respectively, average backbone valence angle of 112, a torsional angle distribution characterized by a fraction of trans conformers of 0.67 and, finally, a weak interchain orientational correlation at around 4 Å.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new methodology that couples neutron diffraction experiments over a wide Q range with single chain modelling in order to explore, in a quantitative manner, the intrachain organization of non-crystalline polymers. The technique is based on the assignment of parameters describing the chemical, geometric and conformational characteristics of the polymeric chain, and on the variation of these parameters to minimize the difference between the predicted and experimental diffraction patterns. The method is successfully applied to the study of molten poly(tetrafluoroethylene) at two different temperatures, and provides unambiguous information on the configuration of the chain and its degree of flexibility. From analysis of the experimental data a model is derived with CC and CF bond lengths of 1.58 and 1.36 Å, respectively, a backbone valence angle of 110° and a torsional angle distribution which is characterized by four isometric states, namely a split trans state at ± 18°, giving rise to a helical chain conformation, and two gauche states at ± 112°. The probability of trans conformers is 0.86 at T = 350°C, which decreases slightly to 0.84 at T = 400°C. Correspondingly, the chain segments are characterized by long all-trans sequences with random changes in sign, rather anisotropic in nature, which give rise to a rather stiff chain. We compare the results of this quantitative analysis of the experimental scattering data with the theoretical predictions of both force fields and molecular orbital conformation energy calculations.