76 resultados para Root-soil Interplay
Resumo:
To determine the effects of defoliation on microbial community structure, rhizosphere soil samples were taken pre-, and post-defoliation from the root tip and mature root regions of Trifolium repens L. and Lolium perenne L. Microbial DNA isolated from samples was used to generate polymerase chain reaction-denaturing gradient gel electrophoresis molecular profiles of bacterial and fungal communities. Bacterial plate counts were also obtained. Neither plant species nor defoliation affected the bacterial and fungal community structures in both the root tip and mature root regions, but there were significant differences in the bacterial and fungal community profiles between the two root regions for each plant. Prior to defoliation, there was no difference between plants for bacterial plate counts of soils from the root tip regions; however, counts were greater in the mature root region of L. perenne than T. repens. Bacterial plate counts for T. repens were higher in the root tip than the mature root region. After defoliation, there was no effect of plant type, position along the root or defoliation status on bacterial plate counts, although there were significant increases in bacterial plate counts with time. The results indicate that a general effect existed during maturation in the root regions of each plant, which had a greater impact on microbial community structure than either plant type or the effect of defoliation. In addition there were no generic consequences with regard to microbial populations in the rhizosphere as a response to plant defoliation.
Resumo:
Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30-min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric-based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
This study investigated the ability of neonatal larvae of the root-feeding weevil, Sitona lepidus Gyllenhal, to locate white clover Trifolium repens L. (Fabaceae) roots growing in soil and to distinguish them from the roots of other species of clover and a co-occurring grass species. Choice experiments used a combination of invasive techniques and the novel technique of high resolution X-ray microtomography to non-invasively track larval movement in the soil towards plant roots. Burrowing distances towards roots of different plant species were also examined. Newly hatched S. lepidus recognized T. repens roots and moved preferentially towards them when given a choice of roots of subterranean clover, Trifolium subterraneum L. (Fabaceae), strawberry clover Trifolium fragiferum L. (Fabaceae), or perennial ryegrass Lolium perenne L. (Poaceae). Larvae recognized T. repens roots, whether released in groups of five or singly, when released 25 mm (meso-scale recognition) or 60 mm (macro-scale recognition) away from plant roots. There was no statistically significant difference in movement rates of larvae.
Resumo:
1. In contrast to above-ground insects, comparatively little is known about the behaviour of subterranean insects, due largely to the difficulty of studying them in situ. 2. The movement of newly hatched (neonate) clover root weevil (Sitona lepidus L. Coleoptera: Curculinidae) larvae was studied non-invasively using recently developed high resolution X-ray microtomography. 3. The movement and final position of S. lepidus larvae in the soil was reliably established using X-ray microtomography, when compared with larval positions that were determined by destructively sectioning the soil column. 4. Newly hatched S. lepidus larvae were seen to attack the root rhizobial nodules of their host plant, white clover (Trifolium repens L.). Sitona lepidus larvae travelled between 9 and 27 mm in 9 h at a mean speed of 1.8 mm h(-1). 5. Sitona lepidus larvae did not move through the soil in a linear manner, but changed trajectory in both the lateral and vertical planes.
Resumo:
The respiratory emission of CO2 from roots is frequently proposed as an attractant that allows soil-dwelling insects to locate host plant roots, but this role has recently become less certain. CO2 is emitted from many sources other than roots, so does not necessarily indicate the presence of host plants, and because of the high density of roots in the upper soil layers, spatial gradients may not always be perceptible by soil-dwelling insects. The role of CO2 in host location was investigated using the clover root weevil Sitona lepidus Gyllenhall and its host plant white clover (Trifolium repens L.) as a model system. Rhizochamber experiments showed that CO2 concentrations were approximately 1000 ppm around the roots of white clover, but significantly decreased with increasing distance from roots. In behavioural experiments, no evidence was found for any attraction by S. lepidus larvae to point emissions of CO2, regardless of emission rates. Fewer than 15% of larvae were attracted to point emissions of CO2, compared with a control response of 17%. However, fractal analysis of movement paths in constant CO2 concentrations demonstrated that searching by S. lepidus larvae significantly intensified when they experienced CO2 concentrations similar to those found around the roots of white clover (i.e. 1000 ppm). It is suggested that respiratory emissions of CO2 may act as a 'search trigger' for S. lepidus, whereby it induces larvae to search a smaller area more intensively, in order to detect location cues that are more specific to their host plant.
Resumo:
Data such as digitized aerial photographs, electrical conductivity and yield are intensive and relatively inexpensive to obtain compared with collecting soil data by sampling. If such ancillary data are co-regionalized with the soil data they should be suitable for co-kriging. The latter requires that information for both variables is co-located at several locations; this is rarely so for soil and ancillary data. To solve this problem, we have derived values for the ancillary variable at the soil sampling locations by averaging the values within a radius of 15 m, taking the nearest-neighbour value, kriging over 5 m blocks, and punctual kriging. The cross-variograms from these data with clay content and also the pseudo cross-variogram were used to co-krige to validation points and the root mean squared errors (RMSEs) were calculated. In general, the data averaged within 15m and the punctually kriged values resulted in more accurate predictions.
Resumo:
A quantitative model of wheat root systems is developed that links the size and distribution of the root system to the capture of water and nitrogen (which are assumed to be evenly distributed with depth) during grain filling, and allows estimates of the economic consequences of this capture to be assessed. A particular feature of the model is its use of summarizing concepts, and reliance on only the minimum number of parameters (each with a clear biological meaning). The model is then used to provide an economic sensitivity analysis of possible target characteristics for manipulating root systems. These characteristics were: root distribution with depth, proportional dry matter partitioning to roots, resource capture coefficients, shoot dry weight at anthesis, specific root weight and water use efficiency. From the current estimates of parameters it is concluded that a larger investment by the crop in fine roots at depth in the soil, and less proliferation of roots in surface layers, would improve yields by accessing extra resources. The economic return on investment in roots for water capture was twice that of the same amount invested for nitrogen capture. (C) 2003 Annals of Botany Company.
Resumo:
There are currently concerns within some sugar industries that long-term monoculture has led to soil degradation and consequent yield decline. An investigation was conducted in Swaziland to assess the effects of fallowing and green manuring practices, over a seven-month period, on sugarcane yields and the physical properties of a poorly draining clay soil. In the subsequent first sugarcane crop after planting, yields were improved from 129 t ha(-1) under continuous sugarcane to 141-144 t ha(-1) after fallowing and green manuring, but there were no significant responses in the first and second ratoon crops. Also, in the first crop after planting, root length index increased from 3.5 km m(-2) under continuous sugarcane to 5.2-6.8 km m(-2) after fallowing, and improved rooting was still evident in the first ratoon crop where there had been soil drying during the fallow period. Soil bulk density, total porosity and water-holding capacity were not affected by the fallowing practices. However, air-filled porosity increased from 11% under continuous sugarcane to 16% after fallowing, and steady state ponded infiltration rates were increased from 0.61 mm h(-1) to 1.34 mm h(-1), but these improvements were no longer evident after a year back under sugarcane. Levels of soil organic matter were reduced in all cases, probably as a result of the tillage operations involved. In the plant crop, root length was well correlated with air-filled porosity, indicating the importance of improving belowground air supply for crop production on poorly draining clay soils.
Resumo:
Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.
Resumo:
The flavonoid class of plant secondary metabolites play a multifunctional role in below-ground plant-microbe interactions with their best known function as signals in the nitrogen fixing legume-rhizobia symbiosis. Flavonoids enter rhizosphere soil as a result of root exudation and senescence but little is known about their subsequent fate or impacts on microbial activity. Therefore, the present study examined the sorptive behaviour, biodegradation and impact on dehydrogenase activity (as determined by iodonitrotetrazolium chloride reduction) of the flavonoids naringenin and formononetin in soil. Organic carbon normalised partition coefficients, log K-oc, of 3.12 (formononetin) and 3.19 (naringenin) were estimated from sorption isotherms and, after comparison with literature log K-oc values for compounds whose soil behaviour is better characterised, the test flavonoids were deemed to be moderately sorbed. Naringenin (spiked at 50 mu g g(-1)) was biodegraded without a detectable lag phase with concentrations reduced to 0.13 +/- 0.01 mu g g(-1) at the end of the 96 h time course. Biodegradation of formononetin proceeded after a lag phase of similar to 24 with concentrations reduced to 4.5 +/- 1% of the sterile control after 72 h. Most probable number (MPN) analysis revealed that prior to the addition of flavonoids, the soil contained 5.4 x 10(6) MPNg(-1) (naringenin) and 7.9 x 10(5) MPNg(-1) (formononetin) catabolic microbes. Formononetin concentration had no significant (p > 0.05) effect on soil dehydrogenase activity, whereas naringenin concentration had an overall but non-systematic impact (p = 0.045). These results are discussed with reference to likely total and bioavailable concentrations of flavonoids experienced by microbes in the rhizosphere. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Tomato plants ( Lycopersicon esculentum Mill. var. DRK) were grown hydroponically to determine the effect of an uneven distribution of nutrients in the root zone on blossomend rot (BER) and Ca and K concentrations in the fruits. The plants were grown in rockwool with their root system divided into two portions. Each portion was irrigated with nutrient solutions with either the same or the different electrical conductivity (EC) in the range 0 to 6 dS m(-1). Solutions with high EC supplied to both sides of the root system significantly increased the incidence of BER. However, when only water or a solution of low EC was supplied to one portion, BER was reduced by 80%. Fruit yields were significantly higher ( P < 0.01) for plants that received solutions of the uneven EC treatments (6/0 or 4.5/0 EC treatment). Plants supplied with solutions of uneven EC generally had higher leaf and fruit concentrations of Ca but lower concentrations of K than those supplied with solutions of high EC. There was no difference in Ca concentration at the distal end of young fruits of the uneven EC treatment but it was reduced in the high EC treatments. The concentration of K in the mature fruits of the uneven EC treatments was lower than that of the high EC treatments and higher or similar that of the 3/3 or 2.5/2.5 EC treatments ( controls). A clear relationship was found between the incidence of BER and the exudation rate. High rate of xylem exudation was observed in the uneven EC treatments. Reduction of BER in the uneven EC treatments is most likely to be the effect of high exudation rate on Ca status in the young fruits. It was concluded that high EC of solution had positive effects on Ca concentration and incidence of BER provided that nutrient solution with low EC or water is supplied to the one portion of the root system.
Resumo:
A field monitoring study was carried out to follow the changes of fine root morphology, biomass and nutrient status in relation to seasonal changes in soil solution chemistry and moisture regime in a mature Scots pine stand on acid soil. Seasonal and yearly fluctuations in soil moisture and soil solution chemistry have been observed. Changes in soil moisture accounted for some of the changes in the soil solution chemistry. The results showed that when natural acidification in the soil occurs with low pH (3.5-4.2) and high aluminium concentration in the soil solution (> 3-10 mg l(-1)), fine root longevity and distribution could be affected. However, fine root growth of Scots pine may not be negatively influenced by adverse soil chemical conditions if soil moisture is not a limiting factor for root growth. In contrast, dry soil conditions increase Scots pine susceptibility to soil acidification and this could significantly reduce fine root growth and increase root mortality. It is therefore important to study seasonal fluctuations of the environmental variables when investigating and modelling cause-effect relationships.
Resumo:
A manipulated increase in acid deposition (15 kg S ha(-1)), carried out for three months in a mature Scots pine (Pinus sylvestris) stand on a podzol, acidified the soil and raised dissolved Al at concentrations above the critical level of 5 mg l(-1) previously determined in a controlled experiment with Scots pine seedlings. The induced soil acidification reduced tree fine root density and biomass significantly in the top 15 cm of soil in the field. The results suggested that the reduction in fine root growth was a response not simply to high Al in solution but to the depletion of exchangeable Ca and Mg in the organic layer, K deficiency, the increase in NH4:NO3 ratio in solution and the high proton input to the soil by the acid manipulation. The results from this study could not justify the hypothesis of Al-induced root damage under field conditions, at least not in the short term. However, the study suggests that a short exposure to soil acidity may affect the fine root growth of mature Scots pine.
Resumo:
A method is presented which allows thermal inertia (the soil heat capacity times the square root of the soil thermal diffusivity, C(h)rootD(h)), to be estimated remotely from micrometeorological observations. The method uses the drop in surface temperature, T-s, between sunset and sunrise, and the average night-time net radiation during that period, for clear, still nights. A Fourier series analysis was applied to analyse the time series of T-s . The Fourier series constants, together with the remote estimate of thermal inertia, were used in an analytical expression to calculate diurnal estimates of the soil heat flux, G. These remote estimates of C(h)rootD(h) and G compared well with values derived from in situ sensors. The remote and in situ estimates of C(h)rootD(h) both correlated well with topsoil moisture content. This method potentially allows area-average estimates of thermal inertia and soil heat flux to be derived from remote sensing, e.g. METEOSAT Second Generation, where the area is determined by the sensor's height and viewing angle. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.