23 resultados para Robinia pseudoacacia extract
Resumo:
Appetite stimulation via partial agonism of cannabinoid type 1 receptors by Δ9tetrahydrocannabinol (Δ9THC) is well documented and can be modulated by non-Δ9THC phytocannabinoids. Δ9THC concentrations sufficient to elicit hyperphagia induce changes to both appetitive (reduced latency to feed) and consummatory (increased meal one size and duration) behaviours. Here, we show that a cannabis extract containing too little Δ9THC to stimulate appetite can induce hyperphagia solely by increasing appetitive behaviours. Twelve, male Lister hooded rats were presatiated before treatment with a low-Δ9THC cannabis extract (0.5, 1.0, 2.0 and 4.0 mg/kg). Hourly intake and meal pattern data were recorded and analyzed using one-way analyses of variance followed by Bonferroni post-hoc tests. The cannabis extract significantly increased food intake during the first hour of testing (at 4.0 mg/kg) and significantly reduced the latency to feed versus vehicle treatments (at doses ≥1.0 mg/kg). Meal size and duration were unaffected. These results show only the increase in appetitive behaviours, which could be attributed to non-Δ9THC phytocannabinoids in the extract rather than Δ9THC. Although further study is required to determine the constituents responsible for these effects, these results support the presence of non-Δ9THC cannabis constituent(s) that exert a stimulatory effect on appetite and likely lack the detrimental psychoactive effects of Δ9THC.
Resumo:
The beneficial effects of green tea catechins, such as the proposed improvement in endothelial function, may be influenced by phase II metabolism during and after absorption. The methylation enzyme, catechol-O-methyltransferase (COMT), has a missense mutation rs4680 (G to A), proposed to result in a 40 % reduction in enzyme activity. In the present pilot study, twenty subjects (ten of each homozygous COMT genotype) were recruited. Green tea extract capsules (836 mg green tea catechins) were given in a fasted state, and a high-carbohydrate breakfast was given after 60 min. Blood samples and vascular function measurements were taken at regular intervals. The change in digital volume pulse stiffness index (SI) from baseline was shown to be different between genotype groups at 120 and 240 min, with a lower SI in the GG individuals (P ≤ 0·044). The change in blood pressure from baseline also differed between genotype groups, with a greater increase in systolic (P = 0·023) and diastolic (P = 0·034) blood pressure at 120 min in the GG group. The AA group was shown to have a greater increase in insulin concentrations at 120 min (P = 0·019) and 180 min (P = 0·008) compared with baseline, despite similar glucose profiles. No genotypic differences were found in vascular reactivity measured using laser Doppler iontophoresis, total nitrite, lipids, plasma total antioxidant capacity or inflammatory markers after ingestion of the green tea extract. In conclusion, SI and insulin response to the glucose load differed between the COMT genotype groups, and this may be suggestive of a green tea extract and genotype interaction.
Resumo:
An in vitro batch culture fermentation experiment was conducted with fecal inocula from three healthy volunteers in the presence and absence of a red wine extract. Changes in main bacterial groups were determined by FISH during a 48 h fermentation period. The catabolism of main flavonoids (i.e., flavan-3-ols and anthocyanins) and the formation of a wide a range of phenolic microbial metabolites were determined by a targeted UPLC-PAD-ESI-TQ MS method. Statistical analysis revealed that catechol/pyrocatechol, as well as 4-hydroxy-5-(phenyl)-valeric, 3- and 4-hydroxyphenylacetic, phenylacetic, phenylpropionic, and benzoic acids, showed the greatest increases in concentration during fermentation, whereas 5-(3′-hydroxyphenyl)-γ-valerolactone, its open form 4-hydroxy-5-(3′-hydroxyphenyl)-valeric acid, and 3,4-dihydroxyphenylacetic acid represented the largest interindividual variations in the catabolism of red wine polyphenols. Despite these changes, microbial catabolism did not produce significant changes in the main bacterial groups detected, although a slight inhibition of the Clostridium histolyticum group was observed.
Resumo:
Although it is known to be a rich source of the putative anti-cancer chemicals isothiocyanates, watercress has not been extensively studied for its cancer preventing properties. The aim of this study was to investigate the potential chemoprotective effects of crude watercress extract toward three important stages in the carcinogenic process, namely initiation, proliferation, and metastasis (invasion) using established in vitro models. HT29 cells were used to investigate the protective effects of the extract on DNA damage and the cell cycle. The extract was not genotoxic but inhibited DNA damage induced by two of the three genotoxins used, namely hydrogen peroxide and fecal water, indicating the potential to inhibit initiation. It also caused an accumulation of cells in the S phase of the cell cycle indicating (possible) cell cycle delay at this stage. The extract was shown to significantly inhibit invasion of HT115 cells through matrigel. Component analysis was also carried out in an attempt to determine the major phytochemicals present in both watercress leaves and the crude extract. In conclusion, the watercress extract proved to be significantly protective against the three stages of the carcinogenesis process investigated.
Resumo:
Objective: We assessed whether a wheat bran extract containing arabino-xylan-oligosaccharide (AXOS) elicited a prebiotic effect and influenced other physiologic parameters when consumed in ready-to-eat cereal at two dose levels. Methods: This double-blind, randomized, controlled, crossover trial evaluated the effects of consuming AXOS at 0 (control), 2.2, or 4.8 g/d as part of ready-to-eat cereal for 3 wk in 55 healthy men and women. Fecal microbial levels, postprandial serum ferulic acid concentrations, and other physiologic parameters were assessed at the beginning and end of each condition. Results: The median bifidobacteria content of stool samples (log10/grams of dry weight [DW]) was found to be higher in the subjects consuming the 4.8-g/d dose (10.03) than in those consuming 2.2 g/d (9.93) and control (9.84, P < 0.001). No significant changes in the populations of other fecal microbes were observed, indicating a selective increase in fecal bifidobacteria. Postprandial ferulic acid was measured at 120 min at the start and end of each 3-wk treatment period in subjects at least 50 y old (n = 37) and increased in a dose-dependent manner (end-of-treatment values 0.007, 0.050, and 0.069 μg/mL for the control, AXOS 2.2 g/d, and AXOS 4.8 g/d conditions, respectively, P for trend < 0.001). Conclusion: These results indicate that AXOS has prebiotic properties, selectively increasing fecal bifidobacteria, and increases postprandial ferulic acid concentrations in a dose-dependent manner in healthy men and women.
Resumo:
The demand for plant material of Rhodiola rosea L. (Crassulaceae) for medicinal use has increased recently, amid concerns about its quality and sustainability. We have analysed the content of phenylpropanoids (total rosavins) and salidroside in liquid extracts from 3-year old cultivated plants of European origin, and mapped the influence of plant part (rhizome versus root), genotype, drying, cutting, and extraction solvent to chemical composition. Rhizomes contained 1.5-4 times more salidroside (0.3-0.4% dry wt) and total rosavins (1.2-3.0%) than roots. The qualitative decisive phenylpropanoid content in the extracts was most influenced by plant part, solvent, and genotype, while drying temperature and cutting conditions were of less importance. We have shown that R. rosea from different boreal European provenances can be grown under temperate conditions and identified factors to obtain consistent high quality extracts provided that authentic germplasm is used and distinguished between rhizome, roots and their mixtures.
Resumo:
The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 μg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and β integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.
Resumo:
The leaves of the olive plant (Olea europaea) are rich in polyphenols, of which oleuropein and hydroxytyrosol (HT) are most characteristic. Such polyphenols have been demonstrated to favourably modify a variety of cardiovascular risk factors. The aim of the present intervention was to investigate the influence of olive leaf extract (OLE) on vascular function and inflammation in a postprandial setting and to link physiological outcomes with absorbed phenolics. A randomised, double-blind, placebo-controlled, cross-over, acute intervention trial was conducted with eighteen healthy volunteers (nine male, nine female), who consumed either OLE (51 mg oleuropein; 10mg HT), or a matched control (separated by a 4-week wash out) on a single occasion. Vascular function was measured by digital volume pulse (DVP), while blood collected at baseline, 1, 3 and 6 h was cultured for 24 h in the presence of lipopolysaccharide in order to investigate effects on cytokine production. Urine was analysed for phenolic metabolites by HPLC. DVP-stiffness index and ex vivo IL-8 production were significantly reduced (P < 0.05) after consumption of OLE compared to the control. These effects were accompanied by the excretion of several phenolic metabolites, namely HT and oleuropein derivatives, which peaked in urine after 8-24 h. The present study provides the first evidence that OLE positively modulates vascular function and IL-8 production in vivo, adding to growing evidence that olive phenolics could be beneficial for health.