19 resultados para Reveal
Resumo:
Debate over the late Quaternary megafaunal extinctions has focussed on whether human colonisation or climatic changes were more important drivers of extinction, with few extinctions being unambiguously attributable to either. Most analyses have been geographically or taxonomically restricted and the few quantitative global analyses have been limited by coarse temporal resolution or overly simplified climate reconstructions or proxies. We present a global analysis of the causes of these extinctions which uses high-resolution climate reconstructions and explicitly investigates the sensitivity of our results to uncertainty in the palaeological record. Our results show that human colonisation was the dominant driver of megafaunal extinction across the world but that climatic factors were also important. We identify the geographic regions where future research is likely to have the most impact, with our models reliably predicting extinctions across most of the world, with the notable exception of mainland Asia where we fail to explain the apparently low rate of extinction found in in the fossil record. Our results are highly robust to uncertainties in the palaeological record, and our main conclusions are unlikely to change qualitatively following minor improvements or changes in the dates of extinctions and human colonisation.
Resumo:
We know that from mid-childhood onwards most new words are learned implicitly via reading; however, most word learning studies have taught novel items explicitly. We examined incidental word learning during reading by focusing on the well-documented finding that words which are acquired early in life are processed more quickly than those acquired later. Novel words were embedded in meaningful sentences and were presented to adult readers early (day 1) or later (day 2) during a five-day exposure phase. At test adults read the novel words in semantically neutral sentences. Participants’ eye movements were monitored throughout exposure and test. Adults also completed a surprise memory test in which they had to match each novel word with its definition. Results showed a decrease in reading times for all novel words over exposure, and significantly longer total reading times at test for early than late novel words. Early-presented novel words were also remembered better in the offline test. Our results show that order of presentation influences processing time early in the course of acquiring a new word, consistent with partial and incremental growth in knowledge occurring as a function of an individual’s experience with each word.
Resumo:
Actin polymerization drives multiple cell processes involving movement and shape change. SCAR/WAVE proteins connect signaling to actin polymerization through the activation of the Arp2/3 complex. SCAR/WAVE is normally found in a complex with four other proteins: PIR121, Nap1, Abi2,and HSPC300 (Figure S1A available online) [1-3]. However,there is no consensus as to whether the complex functions as an unchanging unit or if it alters its composition in response to stimulation, as originally proposed by Edenet al. [1]. It also is unclear whether complex members exclusively regulate SCAR/WAVEs or if they have additional targets [4-6]. Here, we analyze the roles of the unique Dictyostelium Abi. We find that abiA null mutants show less severe defects in motility than do scar null cells, indicating--unexpectedly--that SCAR retains partial activity in the absence of Abi. Furthermore, abiA null mutants have a serious defect in cytokinesis, which is not seen in other SCAR complex mutants and is seen only when SCAR itself is present. Detailed examination reveals that normal cytokinesis requires SCAR activity, apparently regulated through multiple pathways.
Resumo:
Weeds tend to aggregate in patches within fields and there is evidence that this is partly owing to variation in soil properties. Because the processes driving soil heterogeneity operate at different scales, the strength of the relationships between soil properties and weed density would also be expected to be scale-dependent. Quantifying these effects of scale on weed patch dynamics is essential to guide the design of discrete sampling protocols for mapping weed distribution. We have developed a general method that uses novel within-field nested sampling and residual maximum likelihood (REML) estimation to explore scale-dependent relationships between weeds and soil properties. We have validated the method using a case study of Alopecurus myosuroides in winter wheat. Using REML, we partitioned the variance and covariance into scale-specific components and estimated the correlations between the weed counts and soil properties at each scale. We used variograms to quantify the spatial structure in the data and to map variables by kriging. Our methodology successfully captured the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and soil organic matter and clay content were weak and masked the stronger correlations at >50 m. Knowing how the variance was partitioned across the spatial scales we optimized the sampling design to focus sampling effort at those scales that contributed most to the total variance. The methods have the potential to guide patch spraying of weeds by identifying areas of the field that are vulnerable to weed establishment.