88 resultados para Rehydration Solutions
Resumo:
In this work we report on the interaction of KLVFF-PEG with fibrinogen (Fbg) in neutral aqueous solutions at 20 degrees C, for particular ratios of KLVFF-PEG to Fbg concentration, Delta = CKLVFF-PEG/C-Fbg- Our results show the formation of Fbg/KLVFF-PEG complexes for Delta > 0, such that there is not an extended network of complexes throughout the solution. In addition, cleaved protein and Fbg dimers are identified in the solution for Delta >= 0. There is a dramatic change in the tertiary structure of the Fbg upon KLVFF-PEG binding, although the KLVFF-PEG binds to the Fbg without affecting the secondary structure elements of the glycoprotein.
Resumo:
The realisation that much of conventional. modern architecture is not sustainable over the long term is not new. Typical approaches are aimed at using energy and materials more efficiently. However, by clearly understanding the natural processes and their interactions with human needs in view, designers can create buildings that are delightful. functional productive and regenerative by design. The paper aims to review the biomimetics literature that is relevant to building materials and design. Biomimetics is the abstraction of good design from Nature, an enabling interdisciplinary science. particularly interested in emerging properties of materials and structures as a result of their hierarchical organisation. Biomimetics provides ideas relevant to: graded functionality of materials (nano-scale), adaptive response (nano-, micro-. and macro-scales): integrated intelligence (sensing and actuation at all scales), architecture and additional functionality. There are many examples in biology where emergent response of plants and animals to temperature, humidity and other changes in their physical environments is based on relatively simple physical principles. However, the implementation of design solutions which exploit these principles is where inspiration for man-made structures should be. We analyse specific examples of sustainability from Nature and the benefits or value that these solutions have brought to different creatures. By doing this, we appreciate how the natural world fits into the world of sustainable buildings and how as building engineers we can value its true application in delivering sustainable building.
Resumo:
Measurement or prediction of the mechanical and fracture properties of foods is very important in the design, operation and optimization of processes, as well as for the control of quality of food products. This paper describes the measurement of yield stress of frozen sucrose solutions under indentation tests using a spherical indenter. Effects of composition, temperature and strain rate on yield stress of frozen sucrose solutions have also been investigated.
Resumo:
The stress relaxation behaviour of two frozen sucrose solutions (7% and 19%) during indentation in the temperature range of -20C to -40C were investigated. The stress relaxation is similar to that of pure polycrystalline ice, which is controlled by steady-state creep. The steady state creep rate exponent, m, of 7% and 19% sucrose solutions lies between 2.3 and 3.6. The steady state creep rate constant, B, of 19% sucrose solution is greater than that of 7% sucrose solution. It is suggested that the steady-state creep rate exponent m depends on contributions from the proportions of favourably oriented grains, unfavourably oriented grains and grain boundaries to creep and that these components depend on the value of internal stress which is related to the hardness of samples at the different testing temperatures. The steady-state creep rate constant B depends on the mobility of dislocations in sucrose solutions which, in turn, depends on the temperature and the concentration of sucrose.
Resumo:
beta-Casein and alpha-casein showed radical-scavenging activities in aqueous solution, whereas bovine serum albumin (BSA), alpha-lactalbumin and P-lactoglobulin showed much weaker antioxidant activity, when assessed by the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical-scavenging assay. However, beta-casein and alpha-casein showed reduced antioxidant activity after storage at 30 degrees C. An increase in radical- scavenging activity and a fall in fluorescence of the protein component were evident after 6 h, when BSA, beta-lactoglobulin or casein were mixed with EGCG, and excess EGCG was removed, indicating the formation of a complex with this protein on mixing. Storage of all the proteins with EGCG at 30 degrees C caused an increase in the antioxidant activity of the isolated protein component after separation from excess EGCG. This showed that EGCG was reacting with the proteins and that the protein-bound catechin had antioxidant properties. The reaction of EGCG with BSA, casein and beta-lactoglobulin was confirmed by the loss of fluorescence of the protein on storage, and the increase in UV absorbance between 250 and 400 nm. The increase in antioxidant activity of BSA after storage with EGCG was confirmed by the ferric reducing antioxidant potential (FRAP) and the oxygen radical antioxidant capacity (ORAC) assays. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The phase separation behaviour in aqueous mixtures of poly(methyl vinyl ether) and hydroxypropylcellulose has been studied by cloud points method and viscometric measurements. The miscibility of these blends in solid state has been assessed by infrared spectroscopy; methanol vapours sorption experiments and scanning electron microscopy. The values of Gibbs energy of mixing of the polymers and their blends with methanol as well as between each other were calculated. It was found that in solid state the polymers can interact with methanol very well but the polymer-polymer interactions are unfavourable. Although in aqueous solutions the polymers exhibit some intermolecular interactions their solid blends are not completely miscible. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The interactions between hydroxypropylmethylcellulose (HPMC) and poly(acrylic acid) (PAA) as well as poly(methacrylic acid) (PMMA) resulting in formation of hydrophobic interpolymer complexes (IPC) via hydrogen bonding have been studied in aqueous solutions in acidic medium. The formation of IPC of two different compositions (2:1 and 4:1) has been detected for complexes of PAA and HPMC. The critical pH values for complexation of HPMC with PAA and PMAA were determined by the turbidimetric method. It was found that PAA shows the lower complexation ability compared to PMAA due to the more hydrophobic nature of the latter polyacid. The temperature-induced phase separation in HPMC-PAA solution mixtures depends greatly on the components ratio and PAA molecular weight. The complexation ability of hydroxypropylmethylcellulose with respect to poly(acrylic acid) was found to be similar to the complexation ability of methylcellulose, lower than that of hydroxypropylcellulose and higher than that of hydroxyethylcellulose. (c) 2006 Society of Chemical Industry.
Resumo:
This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E-3, the spheres S-3 and the hyperboloids H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1,3). The optimal controls of these systems are solved explicitly in terms of elliptic functions. In this paper, a geometric interpretation of the extremal solutions is given with particular emphasis to a singularity in the explicit solutions. Using a reduced form of the Casimir functions the geometry of these solutions are illustrated.