30 resultados para Reduced models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines criteria for the existence of two stable states of the Atlantic Meridional Overturning Circulation (AMOC) using a combination of theory and simulations from a numerical coupled atmosphere–ocean climate model. By formulating a simple collection of state parameters and their relationships, the authors reconstruct the North Atlantic Deep Water (NADW) OFF state behavior under a varying external salt-flux forcing. This part (Part I) of the paper examines the steady-state solution, which gives insight into the mechanisms that sustain the NADW OFF state in this coupled model; Part II deals with the transient behavior predicted by the evolution equation. The nonlinear behavior of the Antarctic Intermediate Water (AAIW) reverse cell is critical to the OFF state. Higher Atlantic salinity leads both to a reduced AAIW reverse cell and to a greater vertical salinity gradient in the South Atlantic. The former tends to reduce Atlantic salt export to the Southern Ocean, while the latter tends to increases it. These competing effects produce a nonlinear response of Atlantic salinity and salt export to salt forcing, and the existence of maxima in these quantities. Thus the authors obtain a natural and accurate analytical saddle-node condition for the maximal surface salt flux for which a NADW OFF state exists. By contrast, the bistability indicator proposed by De Vries and Weber does not generally work in this model. It is applicable only when the effect of the AAIW reverse cell on the Atlantic salt budget is weak.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cannabis sativa has been associated with contradictory effects upon seizure states despite its medicinal use by numerous people with epilepsy. We have recently shown that the phytocannabinoid cannabidiol (CBD) reduces seizure severity and lethality in the well-established in vivo model of pentylenetetrazoleinduced generalised seizures, suggesting that earlier, small-scale clinical trials examining CBD effects in people with epilepsy warrant renewed attention. Here, we report the effects of pure CBD (1, 10 and 100 mg/kg) in two other established rodent seizure models, the acute pilocarpine model of temporal lobe seizure and the penicillin model of partial seizure. Seizure activity was video recorded and scored offline using model-specific seizure severity scales. In the pilocarpine model CBD (all doses) significantly reduced the percentage of animals experiencing the most severe seizures. In the penicillin model, CBD (�10 mg/kg) significantly decreased the percentage mortality as a result of seizures; CBD (all doses) also decreased the percentage of animals experiencing the most severe tonic–clonic seizures. These results extend the anticonvulsant profile of CBD; when combined with a reported absence of psychoactive effects, this evidence strongly supports CBD as a therapeutic candidate for a diverse range of human epilepsies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current variability of precipitation (P) and its response to surface temperature (T) are analysed using coupled(CMIP5) and atmosphere-only (AMIP5) climate model simulations and compared with observational estimates. There is striking agreement between Global Precipitation Climatology Project (GPCP) observed and AMIP5 simulated P anomalies over land both globally and in the tropics suggesting that prescribed sea surface temperature and realistic radiative forcings are sufficient for simulating the interannual variability in continental P. Differences between the observed and simulated P variability over the ocean, originate primarily from the wet tropical regions, in particular the western Pacific, but are reduced slightly after 1995. All datasets show positive responses of P to T globally of around 2 %/K for simulations and 3-4 %/K in GPCP observations but model responses over the tropical oceans are around 3 times smaller than GPCP over the period 1988-2005. The observed anticorrelation between land and ocean P, linked with El Niño Southern Oscillation, is captured by the simulations. All data sets over the tropical ocean show a tendency for wet regions to become wetter and dry regions drier with warming. Over the wet region (75% precipitation percentile), the precipitation response is ~13-15%/K for GPCP and ~5%/K for models while trends in P are 2.4%/decade for GPCP, 0.6% /decade for CMIP5 and 0.9%/decade for AMIP5 suggesting that models are underestimating the precipitation responses or a deficiency exists in the satellite datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extra-tropical response to El Niño in configurations of a coupled model with increased horizontal resolution in the oceanic component is shown to be more realistic than in configurations with a low resolution oceanic component. This general conclusion is independent of the atmospheric resolution. Resolving small-scale processes in the ocean produces a more realistic oceanic mean state, with a reduced cold tongue bias, which in turn allows the atmospheric model component to be forced more realistically. A realistic atmospheric basic state is critical in order to represent Rossby wave propagation in response to El Niño, and hence the extra-tropical response to El Niño. Through the use of high and low resolution configurations of the forced atmospheric-only model component we show that, in isolation, atmospheric resolution does not significantly affect the simulation of the extra-tropical response to El Niño. It is demonstrated, through perturbations to the SST forcing of the atmospheric model component, that biases in the climatological SST field typical of coupled model configurations with low oceanic resolution can account for the erroneous atmospheric basic state seen in these coupled model configurations. These results highlight the importance of resolving small-scale oceanic processes in producing a realistic large-scale mean climate in coupled models, and suggest that it might may be possible to “squeeze out” valuable extra performance from coupled models through increases to oceanic resolution alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Independent studies have demonstrated that flagella are associated with the invasive process of Salmonella enterica serotypes, and aflagellate derivatives of Salmonella enterica serotype Enteritidis are attenuated in murine and avian models of infection. One widely held view is that the motility afforded by flagella, probably aided by chemotactic responses, mediates the initial interaction between bacterium and host cell. The adherence and invasion properties of two S. Enteritidis wild-type strains and isogenic aflagellate mutants were assessed on HEp-2 and Div-1 cells that are of human and avian epithelial origin, respectively. Both aflagellate derivatives showed a significant reduction of invasion compared with wild type over the three hours of the assays. Complementation of the defective fliC allele recovered partially the wild-type phenotype. Examination of the bacterium-host cell interaction by electron and confocal microscopy approaches showed that wild-type bacteria induced ruffle formation and significant cytoskeletal rearrangements on HEp-2 cells within 5 minutes of contact. The aflagellate derivatives induced fewer ruffles than wild type. Ruffle formation on the Div-1 cell line was less pronounced than for HEp-2 cells for wild-type S. Enteritidis. Collectively, these data support the hypothesis that flagella play an active role in the early events of the invasive process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAMDAS reveal systematic negative values in the stratosphere near 608S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, much like orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-runningCMAMsimulations to assess the impact of extra orographicGWDat 608S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used to simulate mass balances of Nigardsbreen (Norway) and Rhonegletscher (Switzerland). Simulations using reanalyses (ECMWF) for the period 1979–93 are in good agreement with in situ mass balance measurements for Nigardsbreen. The method is applied to multicentury integrations of coupled (ECHAM4/OPYC) and mixed-layer (ECHAM4/MLO) GCMs excluding external forcing. A high correlation between decadal variations in the North Atlantic oscillation (NAO) and mass balance of the glaciers is found. The dominant factor for this relationship is the strong impact of winter precipitation associated with the NAO. A high NAO phase means enhanced (reduced) winter precipitation for Nigardsbreen (Rhonegletscher), typically leading to a higher (lower) than normal annual mass balance. This mechanism, entirely due to internal variations in the climate system, can explain observed strong positive mass balances for Nigardsbreen and other maritime Norwegian glaciers within the period 1980–95. It can also partly be responsible for recent strong negative mass balances of Alpine glaciers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localized solutions in the form of traveling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyze neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and traveling waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The etiology of colorectal cancer (CRC), a common cause of cancer-related mortality globally, has strong associations with diet. There is considerable epidemiological evidence that fruits and vegetables are associated with reduced risk of CRC. This paper reviews the extensive evidence, both from in vitro studies and animal models, that components of berry fruits can modulate biomarkers of DNA damage and that these effects may be potentially chemoprotective, given the likely role that oxidative damage plays in mutation rate and cancer risk. Human intervention trials with berries are generally consistent in indicating a capacity to significantly decrease oxidative damage to DNA, but represent limited evidence for anticarcinogenicity, relying as they do on surrogate risk markers. To understand the effects of berry consumption on colorectal cancer risk, future studies will need to be well controlled, with defined berry extracts, using suitable and clinically relevant end points and considering the importance of the gut microbiota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we explore the possibility of deriving low-dimensional models of the dynamics of the Martian atmosphere. The analysis consists of a Proper Orthogonal Decomposition (POD) of the atmospheric streamfunction after first decomposing the vertical structure with a set of eigenmodes. The vertical modes were obtained from the quasi-geostrophic vertical structure equation. The empirical orthogonal functions (EOFs) were optimized to represent the atmospheric total energy. The total energy was used as the criterion to retain those modes with large energy content and discard the rest. The principal components (PCs) were analysed by means of Fourier analysis, so that the dominant frequencies could be identified. It was possible to observe the strong influence of the diurnal cycle and to identify the motion and vacillation of baroclinic waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux measurements at the detector locations, are derived based on data generated by numerical simulation of a reference model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a phantom experiment and through numerical simulation of brain activation in a rat's head. The applicability of the approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment. We show that our results agree with the expected physiological changes and with results of a similar experimental study. However, by using our approach, a three-dimensional tomographic reconstruction can be performed in ∼3  s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling approach

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparison of single-forcing varieties of 20th century historical experiments in a subset of models from the Fifth Coupled Model Intercomparison Project (CMIP5) reveals that South Asian summer monsoon rainfall increases towards the present day in Greenhouse Gas (GHG)-only experiments with respect to pre-industrial levels, while it decreases in anthropogenic aerosol-only experiments. Comparison of these single-forcing experiments with the all-forcings historical experiment suggests aerosol emissions have dominated South Asian monsoon rainfall trends in recent decades, especially during the 1950s to 1970s. The variations in South Asian monsoon rainfall in these experiments follows approximately the time evolution of inter-hemispheric temperature gradient over the same period, suggesting a contribution from the large-scale background state relating to the asymmetric distribution of aerosol emissions about the equator. By examining the 24 available all-forcings historical experiments, we show that models including aerosol indirect effects dominate the negative rainfall trend. Indeed, models including only the direct radiative effect of aerosol show an increase in monsoon rainfall, consistent with the dominance of increasing greenhouse gas emissions and planetary warming on monsoon rainfall in those models. For South Asia, reduced rainfall in the models with indirect effects is related to decreased evaporation at the land surface rather than from anomalies in horizontal moisture flux, suggesting the impact of indirect effects on local aerosol emissions. This is confirmed by examination of aerosol loading and cloud droplet number trends over the South Asia region. Thus, while remote aerosols and their asymmetric distribution about the equator play a role in setting the inter-hemispheric temperature distribution on which the South Asian monsoon, as one of the global monsoons, operates, the addition of indirect aerosol effects acting on very local aerosol emissions also plays a role in declining monsoon rainfall. The disparity between the response of monsoon rainfall to increasing aerosol emissions in models containing direct aerosol effects only and those also containing indirect effects needs to be urgently investigated since the suggested future decline in Asian anthropogenic aerosol emissions inherent to the representative concentration pathways (RCPs) used for future climate projection may turn out to be optimistic. In addition, both groups of models show declining rainfall over China, also relating to local aerosol mechanisms. We hypothesize that aerosol emissions over China are large enough, in the CMIP5 models, to cause declining monsoon rainfall even in the absence of indirect aerosol effects. The same is not true for India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substantial biases in shortwave cloud forcing (SWCF) of up to ±30 W m−2are found in the midlatitudes of the Southern Hemisphere in the historical simulations of 34 CMIP5 coupled general circulation models. The SWCF biases are shown to induce surface temperature anomalies localized in the midlatitudes, and are significantly correlated with the mean latitude of the eddy-driven jet, with a negative SWCF bias corresponding to an equatorward jet latitude bias. Aquaplanet model experiments are performed to demonstrate that the jet latitude biases are primarily induced by the midlatitude SWCF anomalies, such that the jet moves toward (away from) regions of enhanced (reduced) temperature gradients. The results underline the necessity of accurately representing cloud radiative forcings in state-of-the-art coupled models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.