25 resultados para Rear Vehicle-to-Vehicle Impact Tests.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to illustrate the impact of urban wind environments when assessing the availability of natural ventilation. A numerical study of urban airflow for a complex of five building blocks located at the University of Reading, UK is presented. The computational fluid dynamics software package ANSYS was used to simulate six typical cases of urban wind environments and the potential for natural ventilation assessed. The study highlights the impact of three typical architectural forms (street canyons, semi-enclosures and courtyards) on the local wind environment. Simulation results have also been compared with experimental data collected from six locations on the building complex. The study demonstrates that ventilation strategies formed using regional weather data, may have a propensity to over-estimate the potential for natural ventilation and cooling, due to the impact of urban form which creates a unique microclimate. Characteristics of urban wind flow patterns are presented as a guideline and can be used to assess the design and performance of natural or hybrid ventilation and the opportunity for passive cooling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The agricultural sector which contributes between 20-50% of gross domestic product in Africa and employs about 60% of the population is greatly affected by climate change impacts. Agricultural productivity and food prices are expected to rise due to this impact thereby worsening the food insecurity and poor nutritional health conditions in the continent. Incidentally, the capacity in the continent to adapt is very low. Addressing these challenges will therefore require a holistic and integrated adaptation framework hence this study. A total of 360 respondents selected through a multi-stage random sampling technique participated in the study that took place in Southern Nigeria from 2008-2011. Results showed that majority of respondents (84%) were aware that some climate change characteristics such as uncertainties at the onset of farming season, extreme weather events including flooding and droughts, pests, diseases, weed infestation, and land degradation have all been on the increase. The most significant effects of climate change that manifested in the area were declining soil fertility and weed infestation. Some of the adaptation strategies adopted by farmers include increased weeding, changing the timing of farm operations, and processing of crops to reduce post-harvest losses. Although majority of respondents were aware of government policies aimed at protecting the environment, most of them agreed that these policies were not being effectively implemented. A mutually inclusive framework comprising of both indigenous and modern techniques, processes, practices and technologies was then developed from the study in order to guide farmers in adapting to climate change effects/impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While many academics are sceptical about the 'impact agenda', it may offer the potential to re-value feminist and participatory approaches to the co-production of knowledge. Drawing on my experiences of developing a UK Research Excellence Framework (REF) impact case study based on research on young caregiving in the UK, Tanzania and Uganda, I explore the dilemmas and tensions of balancing an ethic of care and participatory praxis with research management demands to evidence 'impact' in the neoliberal academy. The participatory dissemination process enabled young people to identify their support needs, which translated into policy and practice recommendations and in turn, produced 'impact'. It also revealed a paradox of action-oriented research: this approach may bring greater emotional investment of the participants in the project in potentially negative as well as positive ways, resulting in disenchantment that the research did not lead to tangible outcomes at local level. Participatory praxis may also pose ethical dilemmas for researchers who have responsibilities to care for both 'proximate' and 'distant' others. The 'more than research' relationship I developed with practitioners was motivated by my ethic of care rather than by the demands of the audit culture. Furthermore, my research and the impacts cited emerged slowly and incrementally from a series of small grants in an unplanned, serendipitous way at different scales, which may be difficult to fit within institutional audits of 'impact'. Given the growing pressures on academics, it seems ever more important to embody an ethic of care in university settings, as well as in the 'field'. We need to join the call for 'slow scholarship' and advocate a re-valuing of feminist and participatory action research approaches, which may have most impact at local level, in order to achieve meaningful shifts in the impact agenda and more broadly, the academy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although milk consumption is recommended in most dietary guidelines around the world, its contribution to overall diet quality remains a matter of debate in the scientific community as well as in the public. This paper summarizes the discussion among experts in the field on the place of milk in a balanced, healthy diet. The evidence to date suggests at least a neutral effect of milk intake on health outcomes. The possibility that milk intake is simply a marker of higher nutritional quality diets cannot be ruled out. This review also identifies a number of key research gaps pertaining to the impact of milk consumption on health. These need to be addressed to better inform future dietary guidelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the summer and autumn 2015, El Niño conditions in the east and central Pacific have strengthened, disrupting weather patterns throughout the tropics and into the mid-latitudes. For example, rainfall during this summer’s Indian monsoon was approximately 15% below normal. The continued strong El Niño conditions have the potential to trigger damaging impacts (e.g., droughts, famines, floods), particularly in less-developed tropical countries, which would require a swift and effective humanitarian response to mitigate damage to life and property (e.g., health, migration, infrastructure). This analysis uses key climatic variables (temperature, soil moisture and precipitation) as measures to monitor the ongoing risk of these potentially damaging impacts. The previous 2015-2016 El Niño Impact Analysis was based on observations over the past 35 years and produced Impact Tables showing the likelihood and severity of the impacts on temperature and rainfall by season. The current report is an extension of this work providing information from seasonal forecast models to give a more detailed monthly outlook of the potential near-term impacts of the current El Niño conditions by region. This information has been added to the Impact Tables in the form of a monthly outlook column. This monthly outlook is an indication of the average likely conditions for that month and region and is not a definite prediction of weather impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the summer and autumn 2015, El Niño conditions in the east and central Pacific have strengthened, disrupting weather patterns throughout the tropics and into the mid-latitudes. For example, rainfall during this summer’s Indian monsoon was approximately 15% below normal. The continued strong El Niño conditions have the potential to trigger damaging impacts (e.g. droughts, famines, floods), particularly in less-developed tropical countries, which would require a swift and effective humanitarian response to mitigate damage to life and property (e.g. health, migration, infrastructure). This analysis uses key climatic variables (temperature, soil moisture and precipitation) as measures to monitor the ongoing risk of these potentially damaging impacts. The previous 2015-2016 El Niño Impact Analysis was based on observations over the past 35 years and produced Impact Tables showing the likelihood and severity of the impacts on temperature and rainfall by season. The current report is an extension of this work providing information from observations and seasonal forecast models to give a more detailed outlook of the potential near-term impacts of the current El Niño conditions by region. This information has been added to the Impact Tables in the form of an ‘Observations and Outlook’ row. This consists of observational information for the past seasons of JJA 2015 and SON 2015, a detailed monthly outlook from 5 modeling centres for Dec 2015 and then longer-term seasonal forecast information from 2 modeling centres for the future seasons of JF 2016 and MAM 2016. The seasonal outlook information is an indication of the average likely conditions for that coming month (or season) and region and is not a definite prediction of weather impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the summer and autumn of 2015, El Niño conditions in the east and central Pacific have strengthened, disrupting weather patterns throughout the tropics and into the mid-latitudes. For example, rainfall during this summer’s Indian monsoon was approximately 15% below normal. The continued strong El Niño conditions have the potential to trigger damaging impacts (e.g., droughts, famines, floods), particularly in less-developed tropical countries, which would require a swift and effective humanitarian response to mitigate damage to life and property (e.g., health, migration, infrastructure). This analysis uses key climatic variables (temperature, soil moisture and precipitation) as measures to monitor the ongoing risk of these potentially damaging impacts. The previous 2015-2016 El Niño Impact Analysis was based on observations over the past 35 years and produced Impact Tables showing the likelihood and severity of the impacts on temperature and rainfall by season. The current report is an extension of this work providing information from observations and seasonal forecast models to give a more detailed outlook of the potential near-term impacts of the current El Niño conditions by region. This information has been added to the Impact Tables in the form of an ‘Observations and Outlook’ row. This consists of observational information for the past seasons of JJA 2015, SON 2015 and Dec 2015, a detailed monthly outlook from 4 modeling centres for Jan 2016 and then longer-term seasonal forecast information from 2 modeling centres for the future seasons of Feb 2016, MAM 2016 and Jun 2016. The seasonal outlook information is an indication of the average likely conditions for that coming month (or season) and region and is not a definite prediction of weather impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the summer and autumn of 2015, El Niño conditions in the east and central Pacific strengthened, disrupting weather patterns throughout the tropics and into the mid-latitudes. For example, rainfall during the summer’s Indian monsoon was approximately 15% below normal. The continued strong El Niño conditions have the potential to trigger damaging impacts (e.g., droughts, famines, floods), particularly in less-developed tropical countries, which would require a swift and effective humanitarian response to mitigate damage to life and property (e.g., health, migration, infrastructure). This analysis uses key climatic variables (temperature, soil moisture and precipitation) as measures to monitor the ongoing risk of these potentially damaging impacts. The previous 2015-2016 El Niño Impact Analysis was based on observations over the past 35 years and produced Impact Tables showing the likelihood and severity of the impacts on temperature and rainfall by season. The current report is an extension of this work, providing information from observations and seasonal forecast models to give a more detailed outlook of the potential near-term impacts of the current El Niño conditions by region. This information has been added to the Impact Tables in the form of an ‘Observations and Outlook’ row. This consists of observational information for the past seasons of JJA 2015, SON 2015 and DJ 2015/2016, a detailed monthly outlook from 5 modeling centres for Feb 2016 and then longer-term seasonal forecast information from 2 modeling centres for the future seasons of MAM 2016 and JJ 2016. The seasonal outlook information is an indication of the average likely conditions for that coming month (or season) and region and is not a definite prediction of weather impacts. This report has been produced by University of Reading for Evidence on Demand with the assistance of the UK Department for International Development (DFID) contracted through the Climate, Environment, Infrastructure and Livelihoods Professional Evidence and Applied Knowledge Services (CEIL PEAKS) programme, jointly managed by DAI (which incorporates HTSPE Limited) and IMC Worldwide Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the summer and autumn of 2015, El Niño conditions in the east and central Pacific strengthened, disrupting weather patterns throughout the tropics and into the mid-latitudes. For example, rainfall during the summer’s Indian monsoon was approximately 15% below normal. The continued strong El Niño conditions have the potential to trigger damaging impacts (e.g., droughts, famines, floods), particularly in less-developed tropical countries, which would require a swift and effective humanitarian response to mitigate damage to life and property (e.g., health, migration, infrastructure). This analysis uses key climatic variables (temperature, soil moisture and precipitation) as measures to monitor the ongoing risk of these potentially damaging impacts. The previous 2015-2016 El Niño Impact Analysis was based on observations over the past 35 years and produced Impact Tables showing the likelihood and severity of the impacts on temperature and rainfall by season. The current report is an extension of this work, providing information from observations and seasonal forecast models to give a more detailed outlook of the potential near-term impacts of the current El Niño conditions by region. This information has been added to the Impact Tables in the form of an ‘Observations and Outlook’ row. This consists of observational information for the past seasons of JJA 2015, SON 2015 and DJF 2015/2016, a detailed monthly outlook from 5 modeling centres for Mar 2016 and then longer-term seasonal forecast information from 2 modeling centres for the future seasons of AM 2016 and JJA 2016. The seasonal outlook information is an indication of the average likely conditions for that coming month (or season) and region and is not a definite prediction of weather impacts. This report has been produced by University of Reading for Evidence on Demand with the assistance of the UK Department for International Development (DFID) contracted through the Climate, Environment, Infrastructure and Livelihoods Professional Evidence and Applied Knowledge Services (CEIL PEAKS) programme, jointly managed by DAI (which incorporates HTSPE Limited) and IMC Worldwide Limited.