116 resultados para Rayleigh-Ritz theorem
Resumo:
Arnol'd's second hydrodynamical stability theorem, proven originally for the two-dimensional Euler equations, can establish nonlinear stability of steady flows that are maxima of a suitably chosen energy-Casimir invariant. The usual derivations of this theorem require an assumption of zero disturbance circulation. In the present work an analogue of Arnol'd's second theorem is developed in the more general case of two-dimensional quasi-geostrophic flow, with the important feature that the disturbances are allowed to have non-zero circulation. New nonlinear stability criteria are derived, and explicit bounds are obtained on both the disturbance energy and potential enstrophy which are expressed in terms of the initial disturbance fields. While Arnol'd's stability method relies on the second variation of the energy-Casimir invariant being sign-definite, the new criteria can be applied to cases where the second variation is sign-indefinite because of the disturbance circulations. A version of Andrews' theorem is also established for this problem.
Resumo:
Theorem-proving is a one-player game. The history of computer programs being the players goes back to 1956 and the ‘LT’ LOGIC THEORY MACHINE of Newell, Shaw and Simon. In game-playing terms, the ‘initial position’ is the core set of axioms chosen for the particular logic and the ‘moves’ are the rules of inference. Now, the Univalent Foundations Program at IAS Princeton and the resulting ‘HoTT’ book on Homotopy Type Theory have demonstrated the success of a new kind of experimental mathematics using computer theorem proving.
The correct application of Poynting's theorem to the time-dependent magnetosphere: reply to Heikkila
Resumo:
We show how two linearly independent vectors can be used to construct two orthogonal vectors of equal magnitude in a simple way. The proof that the constructed vectors are orthogonal and of equal magnitude is a good exercise for students studying properties of scalar and vector triple products. We then show how this result can be used to prove van Aubel's theorem that relates the two line segments joining the centres of squares on opposite sides of a plane quadrilateral.
Resumo:
Dual-polarisation radar measurements provide valuable information about the shapes and orientations of atmospheric ice particles. For quantitative interpretation of these data in the Rayleigh regime, common practice is to approximate the true ice crystal shape with that of a spheroid. Calculations using the discrete dipole approximation for a wide range of crystal aspect ratios demonstrate that approximating hexagonal plates as spheroids leads to significant errors in the predicted differential reflectivity, by as much as 1.5 dB. An empirical modification of the shape factors in Gans's spheroid theory was made using the numerical data. The resulting simple expressions, like Gans's theory, can be applied to crystals in any desired orientation, illuminated by an arbitrarily polarised wave, but are much more accurate for hexagonal particles. Calculations of the scattering from more complex branched and dendritic crystals indicate that these may be accurately modelled using the new expression, but with a reduced permittivity dependent on the volume of ice relative to an enclosing hexagonal prism.
Resumo:
A novel statistic for local wave amplitude of the 500-hPa geopotential height field is introduced. The statistic uses a Hilbert transform to define a longitudinal wave envelope and dynamical latitude weighting to define the latitudes of interest. Here it is used to detect the existence, or otherwise, of multimodality in its distribution function. The empirical distribution function for the 1960-2000 period is close to a Weibull distribution with shape parameters between 2 and 3. There is substantial interdecadal variability but no apparent local multimodality or bimodality. The zonally averaged wave amplitude, akin to the more usual wave amplitude index, is close to being normally distributed. This is consistent with the central limit theorem, which applies to the construction of the wave amplitude index. For the period 1960-70 it is found that there is apparent bimodality in this index. However, the different amplitudes are realized at different longitudes, so there is no bimodality at any single longitude. As a corollary, it is found that many commonly used statistics to detect multimodality in atmospheric fields potentially satisfy the assumptions underlying the central limit theorem and therefore can only show approximately normal distributions. The author concludes that these techniques may therefore be suboptimal to detect any multimodality.
Resumo:
In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.
Resumo:
We study generalised prime systems P (1 < p(1) <= p(2) <= ..., with p(j) is an element of R tending to infinity) and the associated Beurling zeta function zeta p(s) = Pi(infinity)(j=1)(1 - p(j)(-s))(-1). Under appropriate assumptions, we establish various analytic properties of zeta p(s), including its analytic continuation, and we characterise the existence of a suitable generalised functional equation. In particular, we examine the relationship between a counterpart of the Prime Number Theorem (with error term) and the properties of the analytic continuation of zeta p(s). Further we study 'well-behaved' g-prime systems, namely, systems for which both the prime and integer counting function are asymptotically well-behaved. Finally, we show that there exists a natural correspondence between generalised prime systems and suitable orders on N-2. Some of the above results are relevant to the second author's theory of 'fractal membranes', whose spectral partition functions are given by Beurling-type zeta functions, as well as to joint work of that author and R. Nest on zeta functions attached to quasicrystals.
Resumo:
The radar scattering properties of realistic aggregate snowflakes have been calculated using the Rayleigh-Gans theory. We find that the effect of the snowflake geometry on the scattering may be described in terms of a single universal function, which depends only on the overall shape of the aggregate and not the geometry or size of the pristine ice crystals which compose the flake. This function is well approximated by a simple analytic expression at small sizes; for larger snowflakes we fit a curve to Our numerical data. We then demonstrate how this allows a characteristic snowflake radius to be derived from dual wavelength radar measurements without knowledge of the pristine crystal size or habit, while at the same time showing that this detail is crucial to using such data to estimate ice water content. We also show that the 'effective radius'. characterizing the ratio of particle volume to projected area, cannot be inferred from dual wavelength radar data for aggregates. Finally, we consider the errors involved in approximating snowflakes by 'air-ice spheres', and show that for small enough aggregates the predicted dual wavelength ratio typically agrees to within a few percent, provided some care is taken in choosing the radius of the sphere and the dielectric constant of the air-ice mixture; at larger sizes the radar becomes more sensitive to particle shape, and the errors associated with the sphere model are found to increase accordingly.
Resumo:
Ice clouds are an important yet largely unvalidated component of weather forecasting and climate models, but radar offers the potential to provide the necessary data to evaluate them. First in this paper, coordinated aircraft in situ measurements and scans by a 3-GHz radar are presented, demonstrating that, for stratiform midlatitude ice clouds, radar reflectivity in the Rayleigh-scattering regime may be reliably calculated from aircraft size spectra if the "Brown and Francis" mass-size relationship is used. The comparisons spanned radar reflectivity values from -15 to +20 dBZ, ice water contents (IWCs) from 0.01 to 0.4 g m(-3), and median volumetric diameters between 0.2 and 3 mm. In mixed-phase conditions the agreement is much poorer because of the higher-density ice particles present. A large midlatitude aircraft dataset is then used to derive expressions that relate radar reflectivity and temperature to ice water content and visible extinction coefficient. The analysis is an advance over previous work in several ways: the retrievals vary smoothly with both input parameters, different relationships are derived for the common radar frequencies of 3, 35, and 94 GHz, and the problem of retrieving the long-term mean and the horizontal variance of ice cloud parameters is considered separately. It is shown that the dependence on temperature arises because of the temperature dependence of the number concentration "intercept parameter" rather than mean particle size. A comparison is presented of ice water content derived from scanning 3-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating cases spanning 39 h over Southern England. It is found that the model predicted mean I WC to within 10% of the observations at temperatures between -30 degrees and - 10 degrees C but tended to underestimate it by around a factor of 2 at colder temperatures.
Resumo:
The perturbed Hartree–Fock theory developed in the preceding paper is applied to LiH, BH, and HF, using limited basis‐set SCF–MO wavefunctions derived by previous workers. The calculated values for the force constant ke and the dipole‐moment derivative μ(1) are (experimental values in parentheses): LiH, ke = 1.618(1.026)mdyn/Å,μ(1) = −18.77(−2.0±0.3)D/ÅBH,ke = 5.199(3.032)mdyn/Å,μ(1) = −1.03(−)D/Å;HF,ke = 12.90(9.651)mdyn/Å,μ(1) = −2.15(+1.50)D/Å. The values of the force on the proton were calculated exactly and according to the Hellmann–Feynman theorem in each case, and the discrepancies show that none of the wavefunctions used are close to the Hartree–Fock limit, so that the large errors in ke and μ(1) are not surprising. However no difficulties arose in the perturbed Hartree–Fock calculation, so that the application of the theory to more accurate wavefunctions appears quite feasible.
Resumo:
The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.