30 resultados para Radioactive dating
Resumo:
This week in the Planet Earth Podcast: the cunning tricks the cuckoo uses to get another bird to do the parenting, why researchers are studying snow in Sweden, and how an improved radiocarbon dating technique may put a few scientists' noses out of joint.
Resumo:
A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution “provenancing” of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the “provenancing” of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.
Resumo:
A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution provenancing of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm and the dominant mode of 0.60 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite and oxides of aluminium, manganese, and magnesium. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the provenancing of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.
Resumo:
Bleaching spectra of the ‘fast’ and ‘medium’ optically stimulated luminescence (OSL) components of quartz are reported. A dependence of photoionization cross-section, σ, on wavelength was observed for the fast and medium components and a significant difference in their responses to stimulation wavelength was found. The ratio of the fast and medium photoionization cross-sections, σfast/σmedium, varied from 30.6 when stimulated with View the MathML source light to 1.4 at View the MathML source. At View the MathML source the fast and medium photoionization cross-sections were found to be sufficiently different that infrared bleaching at raised temperatures allowed the selective removal of the fast component with negligible depletion of the medium. A method for optically separating the OSL components of quartz is suggested, based on the wavelength dependence of photoionization cross-sections.
Resumo:
The optically stimulated luminescence (OSL) signal within quartz may be enhanced by thermal transfer during pre-heating. This may occur via a thermally induced charge transfer from low temperature traps to the OSL traps. Thermal transfer may affect both natural and artificially irradiated samples. The effect, as empirically measured via recuperation tests, is typically observed to be negligible for old samples (<1% of natural signal). However, thermal transfer remains a major concern in the dating of young samples as thermal decay and transfers of geologically unstable traps (typically in the TL range 160–280°C) may be incomplete. Upon pre-heating such a sample might undergo thermal transfer to the dating trap and result in a De overestimate. As a result, there has been a tendency for workers to adopt less rigorous pre-heats for young samples. We have investigated the pre-heat dependence of 23 young quartz samples from various depositional environments using pre-heats between 170°C and 300°C, employing the single aliquot regeneration (SAR) protocol. SAR De's were also calculated for 25 additional young quartz samples of different depositional environments and compared with previous multiple aliquot additive dose (MAAD) data. Results demonstrate no significant De dependence upon pre-heat temperatures. A close correspondence between MAAD data and the current SAR data for the samples tested is also illustrated.
Resumo:
This paper outlines the results of a programme of radiocarbon dating and Bayesian modelling relating to an Early Bronze Age barrow cemetery at Over, Cambridgeshire. In total, 43 dates were obtained, enabling the first high-resolution independent chronology (relating to both burial and architectural events) to be constructed for a site of this kind. The results suggest that the three main turf-mound barrows were probably constructed and used successively rather than simultaneously, that the shift from inhumation to cremation seen on the site was not a straightforward progression, and that the four main ‘types’ of cremation burial in evidence were used throughout the life of the site. Overall, variability in terms of burial practice appears to have been a key feature of the site. The paper also considers the light that the fine-grained chronology developed can shed on recent much wider discussions of memory and time within Early Bronze Age barrows
Resumo:
The date of the Late Bronze Age Minoan eruption of the Thera volcano has provoked much debate among archaeologists, not least in a recent issue of Antiquity (‘Bronze Age catastrophe and modern controversy: dating the Santorini eruption’, March 2014). Here, the authors respond to those recent contributions, citing evidence that closes the gap between the conclusions offered by previous typological, stratigraphic and radiometric dating techniques. They reject the need to choose between alternative approaches to the problem and make a case for the synchronisation of eastern Mediterranean and Egyptian chronologies with agreement on a ‘high’ date in the late seventeenth century BC for the Thera eruption.
Resumo:
The exact pattern, process and timing of the human re-colonization of northern Europe after the end of the last Ice Age remain controversial. Recent research has provided increasingly early dates for at least pioneer explorations of latitudes above 54°N in many regions, yet the far north-west of the European landmass, Scotland, has remained an unexplained exception to this pattern. Although the recently described Hamburgian artefacts from Howburn and an assemblage belonging to the arch-backed point complex from Kilmelfort Cave have established at least a sporadic human presence during earlier stages of the Lateglacial Interstadial, we currently lack evidence for Younger Dryas/Greenland Stadial 1 (GS-1) activity other than rare stray finds that have been claimed to be of Ahrensburgian affiliation but are difficult to interpret in isolation. We here report the discovery of chipped stone artefacts with technological and typological characteristics similar to those of the continental Ahrensburgian at a locality in western Scotland. A preliminary analysis of associated tephra, pollen and phytoliths, along with microstratigraphic analysis, suggest the artefacts represent one or more episodes of human activity that fall within the second half of GS-1 and the Preboreal period
Dating WF16: exploring the chronology of a Pre-Pottery Neolithic A settlement in the Southern Levant
Resumo:
A pre-requisite for understanding the transition to the Neolithic in the Levant is the establishment of a robust chronology, most notably for the late Epi-Palaeolithic and Pre-Pottery Neolithic A (PPNA) periods. In this contribution we undertake a dating analysis of the Pre-Pottery Neolithic site of WF16, southern Jordan, drawing on a sample of 46 AMS 14C dates. We utilise Bayesian methods to quantify an old wood effect to provide an offset that we factor into chronological models for a number of individual structures at WF16 and for the settlement as a whole. In doing so we address the influence of slope variations in the calibration curve and expose the significance of sediment and sample redeposition within sites of this nature. We conclude that for the excavated deposits at WF16 human activity is likely to have started by c. 11.84 ka cal bp and lasted for at least c. 1590 years, ceasing by c. 10.24 ka cal bp. This is marked by a particularly intensive period of activity lasting for c. 350 years centred on 11.25 ka cal bp followed by less intensive activity lasting a further c. 880 years. The study reveals the potential of WF16 as a laboratory to explore methodological issues concerning 14C dating of early Neolithic sites in arid, erosional environments.