31 resultados para RAT ASTROCYTOMA-CELLS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Protein kinase C (PKC) plays a pivotal role in modulating the growth and differentiation of many cell types including the cardiac myocyte. However, little is known about molecules that act immediately downstream of PKC in the heart. In this study we have investigated the expression of 80K/MARCKS, a major PKC substrate, in whole ventricles and in cardiac myocytes from developing rat hearts. Methods: Poly A+ RNA was prepared from neonatal (2-day) and adult (42-day) cardiac myocytes and whole ventricular tissue and mRNA expression determined by reverse transcription-polymerase chain reaction (RT-PCR) using primers designed to identify a 420 bp fragment in the 80K/MARCKS gene. Protein extracts were prepared from either 2-day and 42-day cardiac myocytes or from whole ventricular tissue at 2, 5–11, 14, 17, 21, 28 and 42 days of age. Protein expression was determined by immunoblotting with an 80K/MARCKS antipeptide antibody and PKC activity was determined by measuring the amount of γ32P-ATP transferred to a specific peptide substrate. Results: RT-PCR analysis of 80K/MARCKS mRNA in neonatal (2-day) and adult (42-day) cardiac myocytes showed the expression of this gene in both cell types. Immunoblotting revealed maximum 80K/MARCKS protein expression in whole ventricular tissue at 5 days (a 75% increase above values at 2 days), followed by a transient decrease in expression during the 6–8-day period (61% of the protein expressed at 2 days for 8-day tissue) with levels returning to 5 day levels by 11 days of age. 80K/MARCKS protein was present in cardiac myocytes at 2 days of age whereas it was not detectable in adult cells. In addition, PKC activity levels increased to 160% of levels present at 2 days in 8-day-old ventricles with PKC activity levels returning to 5-day levels by 9 days of age. This was then followed by a steady decline in both 80K/MARCKS protein expression and PKC activity through to adulthood. Conclusions: Expression of the PKC substrate, 80K/MARCKS, in cardiac myocytes changes significantly during development and the transient loss of immunoreactive protein during the 6–8-day developmental period may reflect 80K/MARCKS phosphorylation and subsequent down-regulation as a result of the concomitant up-regulation of PKC activity at this time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mdm2 ubiquitin ligase is an important regulator of p53 abundance and p53-dependent apoptosis. Mdm2 expression is frequently regulated by a p53 Mdm2 autoregulatory loop whereby p53 stimulates Mdm2 expression and hence its own degradation. Although extensively studied in cell lines, relatively little is known about Mdm2 expression in heart where oxidative stress (exacerbated during ischemia-reperfusion) is an important pro-apoptotic stimulus. We demonstrate that Mdm2 transcript and protein expression are induced by oxidative stress (0.2 mm H(2)O(2)) in neonatal rat cardiac myocytes. In other cells, constitutive Mdm2 expression is regulated by the P1 promoter (5' to exon 1), with inducible expression regulated by the P2 promoter (in intron 1). In myocytes, H(2)O(2) increased Mdm2 expression from the P2 promoter, which contains two p53-response elements (REs), one AP-1 RE, and two Ets REs. H(2)O(2) did not detectably increase expression of p53 mRNA or protein but did increase expression of several AP-1 transcription factors. H(2)O(2) increased binding of AP-1 proteins (c-Jun, JunB, JunD, c-Fos, FosB, and Fra-1) to an Mdm2 AP-1 oligodeoxynucleotide probe, and chromatin immunoprecipitation assays showed it increased binding of c-Jun or JunB to the P2 AP-1 RE. Finally, antisense oligonucleotide-mediated reduction of H(2)O(2)-induced Mdm2 expression increased caspase 3 activation. Thus, increased Mdm2 expression is associated with transactivation at the P2 AP-1 RE (rather than the p53 or Ets REs), and Mdm2 induction potentially represents a cardioprotective response to oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rat ileal air interface and submerged explant models were developed and used to compare the adhesion of Salmonella enterica var Enteritidis wild-type strains with that of their isogenic single and multiple deletion mutants. The modified strains studied were defective for fimbriae, flagella, motility or chemotaxis and binding was assessed on tissues with and without an intact mucus layer. A multiple afimbriate/aflagellate (fim(-)/fla(-)) strain, a fimbriate but aflagellate (fla(-)) strain and a fimbriate/flagellate but non-motile (mot(-)) strain bound significantly less extensively to the explants than the corresponding wild-type strains. With the submerged explant model this difference was evident in tissues with or without a mucus layer, whereas in the air interface model it was observed only in tissues,vith an intact mucus layer. A smooth swimming chemotaxis-defective (che(-)) strain and single or multiple afimbriate strains bound to explants as well as their corresponding wild-type strain. This suggests that under the present experimental conditions fimbriae were not essential for attachment of S. enterica var Enteritidis to rat ileal explants, However; the possession of active flagella did appear to be an important factor. in enabling salmonellae to penetrate the gastrointestinal mucus layer and attach specifically to epithelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine proteases generated during injury and inflammation cleave protease-activated receptor 2 (PAR(2)) on primary sensory neurons to induce neurogenic inflammation and hyperalgesia. Hyperalgesia requires sensitization of transient receptor potential vanilloid (TRPV) ion channels by mechanisms involving phospholipase C and protein kinase C (PKC). The protein kinase D (PKD) serine/threonine kinases are activated by diacylglycerol and PKCs and can phosphorylate TRPV1. Thus, PKDs may participate in novel signal transduction pathways triggered by serine proteases during inflammation and pain. However, it is not known whether PAR(2) activates PKD, and the expression of PKD isoforms by nociceptive neurons is poorly characterized. By using HEK293 cells transfected with PKDs, we found that PAR(2) stimulation promoted plasma membrane translocation and phosphorylation of PKD1, PKD2, and PKD3, indicating activation. This effect was partially dependent on PKCepsilon. By immunofluorescence and confocal microscopy, with antibodies against PKD1/PKD2 and PKD3 and neuronal markers, we found that PKDs were expressed in rat and mouse dorsal root ganglia (DRG) neurons, including nociceptive neurons that expressed TRPV1, PAR(2), and neuropeptides. PAR(2) agonist induced phosphorylation of PKD in cultured DRG neurons, indicating PKD activation. Intraplantar injection of PAR(2) agonist also caused phosphorylation of PKD in neurons of lumbar DRG, confirming activation in vivo. Thus, PKD1, PKD2, and PKD3 are expressed in primary sensory neurons that mediate neurogenic inflammation and pain transmission, and PAR(2) agonists activate PKDs in HEK293 cells and DRG neurons in culture and in intact animals. PKD may be a novel component of a signal transduction pathway for protease-induced activation of nociceptive neurons and an important new target for antiinflammatory and analgesic therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas aeruginosa, a major lung pathogen in cystic fibrosis (CF) patients, secretes an elastolytic metalloproteinase (EPa) contributing to bacterial pathogenicity. Proteinase-activated receptor 2 (PAR2), implicated in the pulmonary innate defense, is activated by the cleavage of its extracellular N-terminal domain, unmasking a new N-terminal sequence starting with SLIGKV, which binds intramolecularly and activates PAR2. We show that EPa cleaves the N-terminal domain of PAR2 from the cell surface without triggering receptor endocytosis as trypsin does. As evaluated by measurements of cytosolic calcium as well as prostaglandin E(2) and interleukin-8 production, this cleavage does not activate PAR2, but rather disarms the receptor for subsequent activation by trypsin, but not by the synthetic receptor-activating peptide, SLIGKV-NH(2). Proteolysis by EPa of synthetic peptides representing the N-terminal cleavage/activation sequences of either human or rat PAR2 indicates that cleavages resulting from EPa activity would not produce receptor-activating tethered ligands, but would disarm PAR2 in regard to any further activating proteolysis by activating proteinases. Our data indicate that a pathogen-derived proteinase like EPa can potentially silence the function of PAR2 in the respiratory tract, thereby altering the host innate defense mechanisms and respiratory functions, and thus contributing to pathogenesis in the setting of a disease like CF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene related peptide (CGRP) and intermedin. Although CGRP is widely expressed in the nervous system, less is known about the localization of CLR and RAMP1. To localize these proteins, we raised antibodies to CLR and RAMP1. Antibodies specifically interacted with CLR and RAMP1 in HEK cells coexpressing rat CLR and RAMP1, determined by Western blotting and immunofluorescence. Fluorescent CGRP specifically bound to the surface of these cells and CGRP, CLR, and RAMP1 internalized into the same endosomes. CLR was prominently localized in nerve fibers of the myenteric and submucosal plexuses, muscularis externa and lamina propria of the gastrointestinal tract, and in the dorsal horn of the spinal cord of rats. CLR was detected at low levels in the soma of enteric, dorsal root ganglia (DRG), and spinal neurons. RAMP1 was also localized to enteric and DRG neurons and the dorsal horn. CLR and RAMP1 were detected in perivascular nerves and arterial smooth muscle. Nerve fibers containing CGRP and intermedin were closely associated with CLR fibers in the gastrointestinal tract and dorsal horn, and CGRP and CLR colocalized in DRG neurons. Thus, CLR and RAMP1 may mediate the effects of CGRP and intermedin in the nervous system. However, mRNA encoding RAMP2 and RAMP3 was also detected in the gastrointestinal tract, DRG, and dorsal horn, suggesting that CLR may associate with other RAMPs in these tissues to form a receptor for additional peptides such as adrenomedullin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltage-gated potassium channel subunit Kv3.1 confers fast firing characteristics to neurones. Kv3.1b subunit immunoreactivity (Kv3.1b-IR) was widespread throughout the medulla oblongata, with labelled neurones in the gracile, cuneate and spinal trigeminal nuclei. In the nucleus of the solitary tract (NTS), Kv3.1b-IR neurones were predominantly located close to the tractus solitarius (TS) and could be GABAergic or glutamatergic. Ultrastructurally, Kv3.1b-IR was detected in NTS terminals, some of which were vagal afferents. Whole-cell current-clamp recordings from neurones near the TS revealed electrophysiological characteristics consistent with the presence of Kv3.1b subunits: short duration action potentials (4.2 +/- 1.4 ms) and high firing frequencies (68.9 +/- 5.3 Hz), both sensitive to application of TEA (0.5 mm) and 4-aminopyridine (4-AP; 30 mum). Intracellular dialysis of an anti-Kv3.1b antibody mimicked and occluded the effects of TEA and 4-AP in NTS and dorsal column nuclei neurones, but not in dorsal vagal nucleus or cerebellar Purkinje cells (which express other Kv3 subunits, but not Kv3.1b). Voltage-clamp recordings from outside-out patches from NTS neurones revealed an outward K(+) current with the basic characteristics of that carried by Kv3 channels. In NTS neurones, electrical stimulation of the TS evoked EPSPs and IPSPs, and TEA and 4-AP increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. Synaptic inputs evoked by stimulation of a region lacking Kv3.1b-IR neurones were not affected, correlating the presence of Kv3.1b in the TS with the pharmacological effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doxorubicin is effective against breast cancer, but its major side effect is cardiotoxicity. The aim of this study was to determine whether the efficacy of doxorubicin on cancer cells could be increased in combination with PPARγ agonists or chrono-optimization by exploiting the diurnal cycle. We determined cell toxicity using MCF-7 cancer cells, neonatal rat cardiac myocytes and fibroblasts in this study. Doxorubicin damages the contractile filaments of cardiac myocytes and affects cardiac fibroblasts by significantly inhibiting collagen production and proliferation at the level of the cell cycle. Cyclin D1 protein levels decreased significantly following doxorubicin treatment indicative of a G1 /S arrest. PPARγ agonists with doxorubicin increased the toxicity to MCF-7 cancer cells without affecting cardiac cells. Rosiglitazone and ciglitazone both enhanced anti-cancer activity when combined with doxorubicin (e.g. 50% cell death for doxorubicin at 0.1 μM compared to 80% cell death when combined with rosiglitazone). Thus, the therapeutic dose of doxorubicin could be reduced by 20-fold through combination with the PPARγ agonists, thereby reducing adverse effects on the heart. The presence of melatonin also significantly increased doxorubicin toxicity, in cardiac fibroblasts (1 μM melatonin) but not in MCF-7 cells. Our data show, for the first time, that circadian rhythms play an important role in doxorubicin toxicity in the myocardium; doxorubicin should be administered mid-morning, when circulating levels of melatonin are low, and in combination with rosiglitazone to increase therapeutic efficacy in cancer cells while reducing the toxic effects on the heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized ‘on’, ‘adjacent to’ and ‘away from’ the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In our seminal work, we reported how the biomaterial Parylene-C has the unique ability to coerce neurons and glial cells to migrate to and then grow in straight lines along serum coated rectangular parylene-C structures mounted on an oxidised silicon substrate. In this brief communication, we report how astrocyte cell bodies, from the dissociated postnatal rat hippocampus, can now to be successfully localised on an ultra-thin 13nm layer of parylene-C mounted on oxidised silicon (Figure 1). What is extremely interesting about this finding is that the astrocyte processes extended mainly in horizontal and vertical directions from the cell body thus creating a regular lattice network of individual cells. In addition, they comfortably extended a 50μm gap (equivalent to ~ 10 cell body diameters) to connect to adjacent astrocytes on neighbouring Parylene-C structures. This was found to occur repeatedly on circular geometries of 20μm diameter. In comparison to our previous work [1], we have decreased the thickness of the parylene-C structures by a factor of 10, to allow such technology to be able to be utilised for passive electrode design that requires extremely thin structures such as these. Thus, being able to culture astrocytes in regular lattice networks will pave the way for precise monitoring and stimulation of such ensembles via multi-electrode arrays, allowing a closer insight into their dynamic behaviour and their network properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The permeability of the lung is critical in determining the disposition of inhaled drugs and the respiratory epithelium provides the main physical barrier to drug absorption. The 16HBE14o- human bronchial epithelial cell line has been developed recently as a model of the airway epithelium. In this study, the transport of 10 low molecular weight compounds was measured in the 16HBE14o- cell layers, with apical to basolateral (absorptive) apparent permeability coefficients (P(app)) ranging from 0.4 x 10(-6)cms(-1) for Tyr-D-Arg-Phe-Phe-NH(2) to 25.2x10(-6)cms(-1) for metoprolol. Permeability in 16HBE14o- cells was found to correlate with previously reported P(app) in Caco-2 cells and absorption rates in the isolated perfused rat lung (k(a,lung)) and the rat lung in vivo (k(a,in vivo)). Log linear relationships were established between P(app) in 16HBE14o- cells and P(app) in Caco-2 cells (r(2)=0.82), k(a,lung) (r(2)=0.78) and k(a,in vivo) (r(2)=0.68). The findings suggest that permeability in 16HBE14o- cells may be useful to predict the permeability of compounds in the lung, although no advantage of using the organ-specific cell line 16HBE14o- compared to Caco-2 cells was found in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a model for brain inflammation we previously studied transcriptional profiles of tumor necrosis factor-alpha (TNF)treated U373 astroglioma cells. In previous work we were able to demonstrate that the chemokine monocyte chemoattractant protein-1 (MCP-1, SCYA2, CCL2, MCAF) expression in U373 cells was inducible by TNF-alpha treatment. Demonstrably MCP-1 mRNA and protein expression in U373 cells was sustainable over time and at the highest level of all genes analyzed (Schwamborn et al., BMC Genomics 4, 46, 2003). In the hematopoietic system MCP-1 is a CC chemokine that attracts monocytes, memory T lymphocytes, and natural killer cells. In search of further functions in brain inflammation we tested the hypothesis that MCP-1 acts as a chemokine on neural stem cells. Here we report that MCP-1 activates the migration capacity of rat-derived neural stem cells. The migration of stem cells in a Boyden chamber analysis was elevated after stimulation with MCP-1. Time-lapse video microscopy visualized the migration of single stem cells from neurospheres in MCP-1-treated cultures, whereas untreated cultures depicted no migration at all, but showed signs of sprouting. Expression of the MCP-1 receptor CCR2 in neurosphere cultures was verified by RT-PCR and immunofluorescence microscopy. Supernatants from TNF-treated U373 cells also induced migration of neural stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1-8) [(Des-Arg9)BK] stimulated PtdinsP2 hydrolysis by 3-4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 microM [BK(1-8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-delta and nPKC-epsilon from the soluble to the particulate fraction. EC50 values for nPKC-delta translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-epsilon translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-delta and nPKC-epsilon by BK(1-8) were more than 5 microM. The classical PKC, cPKC-alpha, and the atypical PKC, nPKC-zeta, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3-5 min, 30-35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1-8) were more than 10 microM. The order of potency [BK approximately equal to kallidin > BK (1-8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-delta and nPKC-epsilon translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1-8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-delta, and nPKC-epsilon, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology and patterns of gene expression. This difference could not be attributed to dissimilarities between the duration of activation of p42/p44-MAPK by BK or ET-1. Thus activation of these signalling pathways alone may be insufficient to induce a powerful hypertrophic response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ventricular myocytes are exposed to various pathologically important cell stresses in vivo. In vitro, extreme stresses (sorbitol-induced hyperosmotic shock in the presence or absence of okadaic acid, and anisomycin) were applied to ventricular myocytes cultured from neonatal rat hearts to induce a robust activation of the 46 and 54 kDa stress-activated protein kinases (SAPKs). These activities were increased in nuclear extracts of cells in the absence of any net import of SAPK protein. Phosphorylation of ATF2 and c-Jun was increased as shown by the appearance of reduced-mobility species on SDS/PAGE, which were sensitive to treatment with protein phosphatase 2A. Hyperosmotic shock and anisomycin had no effect on the abundance of ATF2. In contrast, cell stresses induced a greater than 10-fold increase in total c-Jun immunoreactivity detected on Western blots with antibody to c-Jun (KM-1). Cycloheximide did not inhibit this increase, which we conclude represents phosphorylation of c-Jun. This conclusion was supported by use of a c-Jun(phospho-Ser-73) antibody. Immunostaining of cells also showed increases in nuclear phospho-c-Jun in response to hyperosmotic stress. Severe stress (hyperosmotic shock+okadaic acid for 2 h) induced proteins (migrating at approx. 51 and 57 kDa) that cross-reacted strongly with KM-1 antibodies in both the nucleus and the cytosol. These may represent forms of c-Jun that had undergone further modification. These studies show that stresses induce phosphorylation of transcription factors in ventricular myocytes and we suggest that this response may be pathologically relevant.