17 resultados para Quasi-Uniform Space
Resumo:
The effects of a non-uniform wind field along the path of a scintillometer are investigated. Theoretical spectra are calculated for a range of scenarios where the crosswind varies in space or time and compared to the ‘ideal’ spectrum based on a constant uniform crosswind. It is verified that the refractive-index structure parameter relation with the scintillometer signal remains valid and invariant for both spatially and temporally-varying crosswinds. However, the spectral shape may change significantly preventing accurate estimation of the crosswind speed from the peak of the frequency spectrum and retrieval of the structure parameter from the plateau of the power spectrum. On comparison with experimental data, non-uniform crosswind conditions could be responsible for previously unexplained features sometimes seen in observed spectra. By accounting for the distribution of crosswind, theoretical spectra can be generated that closely replicate the observations, leading to a better understanding of the measurements. Spatial variability of wind speeds should be expected for paths other than those that are parallel to the surface and over flat, homogenous areas, whilst fluctuations in time are important for all sites.
Resumo:
We construct a quasi-sure version (in the sense of Malliavin) of geometric rough paths associated with a Gaussian process with long-time memory. As an application we establish a large deviation principle (LDP) for capacities for such Gaussian rough paths. Together with Lyons' universal limit theorem, our results yield immediately the corresponding results for pathwise solutions to stochastic differential equations driven by such Gaussian process in the sense of rough paths. Moreover, our LDP result implies the result of Yoshida on the LDP for capacities over the abstract Wiener space associated with such Gaussian process.