140 resultados para Quasi-Biennial Oscillation(QBO)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study considers the strength of the Northern Hemisphere Holton-Tan effect (HTE) in terms of the phase alignment of the quasi-biennial oscillation (QBO) with respect to the annual cycle. Using the ERA-40 Reanalysis, it is found that the early winter (Nov–Dec) and late winter (Feb–Mar) relation between QBO phase and the strength of the stratospheric polar vortex is optimized for subsets of the 44-year record that are chosen on the basis of the seasonality of QBO phase transitions at the 30 hPa level. The timing of phase transitions serves as a proxy for changes in the vertical structure of the QBO over the whole depth of the tropical stratosphere. The statistical significance of the Nov–Dec (Feb–Mar) HTE is greatest when 30 hPa QBO phase transitions occur 9–14 (4–9) months prior to the January of the NH winter in question. This suggests that there exists for both early and late winter a vertical structure of tropical stratospheric winds that is most effective at influencing the interannual variability of the polar vortex, and that an early (late) winter HTE is associated with an early (late) progression of QBO phase towards that structure. It is also shown that the seasonality of QBO phase transitions at 30 hPa varies on a decadal timescale, with transitions during the first half of the calendar year being relatively more common during the first half of the tropical radiosonde wind record. Combining these two results suggests that decadal changes in HTE strength could result from the changing seasonality of QBO phase transitions. Citation: Anstey, J. A., and T. G. Shepherd (2008), Response of the northern stratospheric polar vortex to the seasonal alignment of QBO phase transitions, Geophys. Res. Lett., 35, L22810, doi:10.1029/2008GL035721.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stratospheric sudden warming in the Southern Hemisphere (SH) in September 2002 was unexpected for two reasons. First, planetary wave activity in the Southern Hemisphere is very weak, and midwinter warmings have never been observed, at least not since observations of the upper stratosphere became regularly available. Second, the warming occurred in a west phase of the quasi-biennial oscillation (QBO) in the lower stratosphere. This is unexpected because warmings are usually considered to be more likely in the east phase of the QBO, when a zero wind line is present in the winter subtropics and hence confines planetary wave propagation to higher latitudes closer to the polar vortex. At first, this evidence suggests that the sudden warming must therefore be simply a result of anomalously strong planetary wave forcing from the troposphere. However, recent model studies have suggested that the midwinter polar vortex may also be sensitive to the equatorial winds in the upper stratosphere, the region dominated by the semiannual oscillation. In this paper, the time series of equatorial zonal winds from two different data sources, the 40-yr ECMWF Re-Analysis (ERA) and the Met Office assimilated dataset, are reviewed. Both suggest that the equatorial winds in the upper stratosphere above 10 hPa were anomalously easterly in 2002. Idealized model experiments are described in which the modeled equatorial winds were relaxed toward these observations for various years to examine whether the anomalous easterlies in 2002 could influence the timing of a warming event. It is found that the 2002 equatorial winds speed up the evolution of a warming event in the model. Therefore, this study suggests that the anomalous easterlies in the 1–10-hPa region may have been a contributory factor in the development of the observed SH warming. However, it is concluded that it is unlikely that the anomalous equatorial winds alone can explain the 2002 warming event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The annual and interannual variability of idealized, linear, equatorial waves in the lower stratosphere is investigated using the temperature and velocity fields from the ECMWF 15-year re-analysis dataset. Peak Kelvin wave activity occurs during solstice seasons at 100 hPa, during December-February at 70 hPa and in the easterly to westerly quasi-biennial oscillation (QBO) phase transition at 50 hPa. Peak Rossby-gravity wave activity occurs during equinox seasons at 100 hPa, during June-August/September-November at 70 hPa and in the westerly to easterly QBO phase transition at 50 hPa. Although neglect of wind shear means that the results for inertio-gravity waves are likely to be less accurate, they are still qualitatively reasonable and an annual cycle is observed in these waves at 100 hPa and 70 hPa. Inertio-gravity waves with n = 1 are correlated with the QBO at 50 hPa, but the eastward inertio-gravity n = 0 wave is not, due to its very fast vertical group velocity in all background winds. The relative importance of different wave types in driving the QBO at 50 hPa is also discussed. The strongest acceleration appears to be provided by the Kelvin wave while the acceleration provided by the Rossby-gravity wave is negligible. Of the higher-frequency waves, the westward inertio-gravity n = 1 wave appears able to contribute more to the acceleration of the 50 hPa mean zonal wind than the eastward inertio-gravity n = 1 wave.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979–2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichón eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichón eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the impact of changing the current imposed ozone climatology upon the tropical Quasi-Biennial Oscillation (QBO) in a high top climate configuration of the Met Office U.K. general circulation model. The aim is to help distinguish between QBO changes in chemistry climate models that result from temperature-ozone feedbacks and those that might be forced by differences in climatology between previously fixed and newly interactive ozone distributions. Different representations of zonal mean ozone climatology under present-day conditions are taken to represent the level of change expected between acceptable model realizations of the global ozone distribution and thus indicate whether more detailed investigation of such climatology issues might be required when assessing ozone feedbacks. Tropical stratospheric ozone concentrations are enhanced relative to the control climatology between 20–30 km, reduced from 30–40 km and enhanced above, impacting the model profile of clear-sky radiative heating, in particular warming the tropical stratosphere between 15–35 km. The outcome is consistent with a localized equilibrium response in the tropical stratosphere that generates increased upwelling between 100 and 4 hPa, sufficient to account for a 12 month increase of modeled mean QBO period. This response has implications for analysis of the tropical circulation in models with interactive ozone chemistry because it highlights the possibility that plausible changes in the ozone climatology could have a sizable impact upon the tropical upwelling and QBO period that ought to be distinguished from other dynamical responses such as ozone-temperature feedbacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and evolution of the Arctic stratospheric polar vortex is assessed during opposing phases of, primarily, the El Niño–Southern Oscillation (ENSO) and the Quasi-Biennial Oscillation (QBO), but the 11 year solar cycle and winters following large volcanic eruptions are also examined. The analysis is performed by taking 2-D moments of vortex potential vorticity (PV) fields which allow the area and centroid of the vortex to be calculated throughout the ERA-40 reanalysis data set (1958–2002). Composites of these diagnostics for the different phases of the natural forcings are then considered. Statistically significant results are found regarding the structure and evolution of the vortex during, in particular, the ENSO and QBO phases. When compared with the more traditional zonal mean zonal wind diagnostic at 60°N, the moment-based diagnostics are far more robust and contain more information regarding the state of the vortex. The study details, for the first time, a comprehensive sequence of events which map the evolution of the vortex during each of the forcings throughout an extended winter period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the variability of equatorial ozone profiles in the Satellite Aerosol and Gas Experiment‐corrected Solar Backscatter Ultraviolet data set demonstrates a strong seasonal persistence of interannual ozone anomalies, revealing a seasonal dependence to equatorial ozone variability. In the lower stratosphere (40–25 hPa) and in the upper stratosphere (6–4 hPa), ozone anomalies persist from approximately November until June of the following year, while ozone anomalies in the layer between 16 and 10 hPa persist from June to December. Analysis of zonal wind fields in the lower stratosphere and temperature fields in the upper stratosphere reveals a similar seasonal persistence of the zonal wind and temperature anomalies associated with the quasi‐biennial oscillation (QBO). Thus, the persistence of interannual ozone anomalies in the lower and upper equatorial stratosphere, which are mainly associated with the well‐known QBO ozone signal through the QBO-induced meridional circulation, is related to a newly identified seasonal persistence of the QBO itself. The upper stratospheric QBO ozone signal is argued to arise from a combination of QBO‐induced temperature and NOx perturbations, with the former dominating at 5 hPa and the latter at 10 hPa. Ozone anomalies in the transition zone between dynamical and photochemical control of ozone (16–10 hPa) are less influenced by the QBO signal and show a quite different seasonal persistence compared to the regions above and below.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of observed ozone profiles in Northern Hemisphere low and middle latitudes reveals the seasonal persistence of ozone anomalies in both the lower and upper stratosphere. Principal component analysis is used to detect that above 16 hPa the persistence is strongest in the latitude band 15–45°N, while below 16 hPa the strongest persistence is found over 45–60°N. In both cases, ozone anomalies persist through the entire year from November to October. The persistence of ozone anomalies in the lower stratosphere is presumably related to the wintertime ozone buildup with subsequent photochemical relaxation through summer, as previously found for total ozone. The persistence in the upper stratosphere is more surprising, given the short lifetime of Ox at these altitudes. It is hypothesized that this “seasonal memory” in the upper stratospheric ozone anomalies arises from the seasonal persistence of transport-induced wintertime NOy anomalies, which then perturb the ozone chemistry throughout the rest of the year. This hypothesis is confirmed by analysis of observations of NO2, NOx, and various long-lived trace gases in the upper stratosphere, which are found to exhibit the same seasonal persistence. Previous studies have attributed much of the year-to-year variability in wintertime extratropical upper stratospheric ozone to the Quasi-Biennial Oscillation (QBO) through transport-induced NOy (and hence NO2) anomalies but have not identified any statistical connection between the QBO and summertime ozone variability. Our results imply that through this “seasonal memory,” the QBO has an asynchronous effect on ozone in the low to midlatitude upper stratosphere during summer and early autumn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recovery of the Arctic polar vortex following stratospheric sudden warmings is found to take upward of 3 months in a particular subset of cases, termed here polar-night jet oscillation (PJO) events. The anomalous zonal-mean circulation above the pole during this recovery is characterized by a persistently warm lower stratosphere, and above this a cold midstratosphere and anomalously high stratopause, which descends as the event unfolds. Composites of these events in the Canadian Middle Atmosphere Model show the persistence of the lower-stratospheric anomaly is a result of strongly suppressed wave driving and weak radiative cooling at these heights. The upper-stratospheric and lower-mesospheric anomalies are driven immediately following the warming by anomalous planetary-scale eddies, following which, anomalous parameterized nonorographic and orographic gravity waves play an important role. These details are found to be robust for PJO events (as opposed to sudden warmings in general) in that many details of individual PJO events match the composite mean. Azonal-mean quasigeostrophic model on the sphere is shown to reproduce the response to the thermal and mechanical forcings produced during a PJO event. The former is well approximated by Newtonian cooling. The response can thus be considered as a transient approach to the steady-state, downward control limit. In this context, the time scale of the lower-stratospheric anomaly is determined by the transient, radiative response to the extended absence of wave driving. The extent to which the dynamics of the wave-driven descent of the stratopause can be considered analogous to the descending phases of the quasi-biennial oscillation (QBO) is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using an international, multi-model suite of historical forecasts from the World Climate Research Programme (WCRP) Climate-system Historical Forecast Project (CHFP), we compare the seasonal prediction skill in boreal wintertime between models that resolve the stratosphere and its dynamics (“high-top”) and models that do not (“low-top”). We evaluate hindcasts that are initialized in November, and examine the model biases in the stratosphere and how they relate to boreal wintertime (Dec-Mar) seasonal forecast skill. We are unable to detect more skill in the high-top ensemble-mean than the low-top ensemble-mean in forecasting the wintertime North Atlantic Oscillation, but model performance varies widely. Increasing the ensemble size clearly increases the skill for a given model. We then examine two major processes involving stratosphere-troposphere interactions (the El Niño-Southern Oscillation/ENSO and the Quasi-biennial Oscillation/QBO) and how they relate to predictive skill on intra-seasonal to seasonal timescales, particularly over the North Atlantic and Eurasia regions. High-top models tend to have a more realistic stratospheric response to El Niño and the QBO compared to low-top models. Enhanced conditional wintertime skill over high-latitudes and the North Atlantic region during winters with El Niño conditions suggests a possible role for a stratospheric pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations have shown that the monsoon is a highly variable phenomenon of the tropical troposphere, which exhibits significant variance in the temporal range of two to three years. The reason for this specific interannual variability has not yet been identified unequivocally. Observational analyses have also shown that EI Niño indices or western Pacific SSTs exhibit some power in the two to three year period range and therefore it was suggested that an ocean-atmosphere interaction could excite and support such a cycle. Similar mechanisms include land-surface-atmosphere interaction as a possible driving mechanism. A rather different explanation could be provided by a forcing mechanism based on the quasi-biennial oscillation of the zonal wind in the lower equatorial stratosphere (QBO). The QBO is a phenomenon driven by equatorial waves with periods of some days which are excited in the troposphere. Provided that the monsoon circulation reacts to the modulation of tropopause conditions as forced by the QBO, this could explain monsoon variability in the quasi-biennial window. The possibility of a QBO-driven monsoon variability is investigated in this study in a number of general circulation model experiments where the QBO is assimilated to externally controlled phase states. These experiments show that the boreal summer monsoon is significantly influenced by the QBO. A QBO westerly phase implies less precipitation in the western Pacific, but more in India, in agreement with observations. The austral summer monsoon is exposed to similar but weaker mechanisms and the precipitation does not change significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of selected observing systems on the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA40) is explored by mimicking observational networks of the past. This is accomplished by systematically removing observations from the present observational data base used by ERA40. The observing systems considered are a surface-based system typical of the period prior to 1945/50, obtained by only retaining the surface observations, a terrestrial-based system typical of the period 1950-1979, obtained by removing all space-based observations, and finally a space-based system, obtained by removing all terrestrial observations except those for surface pressure. Experiments using these different observing systems have been limited to seasonal periods selected from the last 10 yr of ERA40. The results show that the surface-based system has severe limitations in reconstructing the atmospheric state of the upper troposphere and stratosphere. The terrestrial system has major limitations in generating the circulation of the Southern Hemisphere with considerable errors in the position and intensity of individual weather systems. The space-based system is able to analyse the larger-scale aspects of the global atmosphere almost as well as the present observing system but performs less well in analysing the smaller-scale aspects as represented by the vorticity field. Here, terrestrial data such as radiosondes and aircraft observations are of paramount importance. The terrestrial system in the form of a limited number of radiosondes in the tropics is also required to analyse the quasi-biennial oscillation phenomenon in a proper way. The results also show the dominance of the satellite observing system in the Southern Hemisphere. These results all indicate that care is required in using current reanalyses in climate studies due to the large inhomogeneity of the available observations, in particular in time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climatology of a stratosphere-resolving version of the Met Office’s climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations—the tropical “tape recorder”—is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasi-biennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a troposphere‐stratosphere model of intermediate complexity to study the atmospheric response to an idealized solar forcing in the subtropical upper stratosphere during Northern Hemisphere (NH) early winter. We investigate two conditions that could influence poleward and downward propagation of the response: (1) the representation of gravity wave effects and (2) the presence/absence of stratospheric sudden warmings (SSWs). We also investigate how the perturbation influences the timing and frequency of SSWs. Differences in the poleward and downward propagation of the response within the stratosphere are found depending on whether Rayleigh friction (RF) or a gravity wave scheme (GWS) is used to represent gravity wave effects. These differences are likely related to differences in planetary wave activity in the GWS and RF versions, as planetary wave redistribution plays an important role in the downward and poleward propagation of stratospheric signals. There is also remarkable sensitivity in the tropospheric response to the representation of the gravity wave effects. It is most realistic for GWS. Further, tropospheric responses are systematically different dependent on the absence/presence of SSWs. When only years with SSWs are examined, the tropospheric signal appears to have descended from the stratosphere, while the signal in the troposphere appears disconnected from the stratosphere when years with SSWs are excluded. Different troposphere‐stratosphere coupling mechanisms therefore appear to be dominant for years with and without SSWs. The forcing does not affect the timing of SSWs, but does result in a higher occurrence frequency throughout NH winter. Quasi‐Biennial Oscillation effects were not included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.