22 resultados para Quantum Chromodynamics, Helicity Rates, One-Loop Corrections, Bremsstrahlung Contributions, Heavy Quarks, Standard Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Though leading order (LO) predictions for the hadroproduction of heavy quarks at RHIC look promising, next-to-leading order (NLO) corrections must be considered. First partonic NLO results are reported here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the complete next-to-leading order QCD corrections to the polarized hadroproduction of heavy flavors. This reaction can be studied experimentally in polarized pp collisions at the JHF and at the BNL RHIC in order to constrain the polarized gluon density. It is demonstrated that the dependence on the unphysical renormalization and factorization scales is strongly reduced beyond the leading order. We also discuss how the high luminosity at the JHF can be used to control remaining theoretical uncertainties. An effective method for bridging the gap between theoretical predictions for heavy quarks and experimental measurements of heavy meson decay products is introduced briefly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interpersonal interaction in public goods contexts is very different in character to its depiction in economic theory, despite the fact that the standard model is based on a small number of apparently plausible assumptions. Approaches to the problem are reviewed both from within and outside economics. It is argued that quick fixes such as a taste for giving do not provide a way forward. An improved understanding of why people contribute to such goods seems to require a different picture of the relationships between individuals than obtains in standard microeconomic theory, where they are usually depicted as asocial. No single economic model at present is consistent with all the relevant field and laboratory data. It is argued that there are defensible ideas from outside the discipline which ought to be explored, relying on different conceptions of rationality and/or more radically social agents. Three such suggestions are considered, one concerning the expressive/communicative aspect of behaviour, a second the possibility of a part-whole relationship between interacting agents and the third a version of conformism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal-to-interannual predictions of Arctic sea ice may be important for Arctic communities and industries alike. Previous studies have suggested that Arctic sea ice is potentially predictable but that the skill of predictions of the September extent minimum, initialized in early summer, may be low. The authors demonstrate that a melt season “predictability barrier” and two predictability reemergence mechanisms, suggested by a previous study, are robust features of five global climate models. Analysis of idealized predictions with one of these models [Hadley Centre Global Environment Model, version 1.2 (HadGEM1.2)], initialized in January, May and July, demonstrates that this predictability barrier exists in initialized forecasts as well. As a result, the skill of sea ice extent and volume forecasts are strongly start date dependent and those that are initialized in May lose skill much faster than those initialized in January or July. Thus, in an operational setting, initializing predictions of extent and volume in July has strong advantages for the prediction of the September minimum when compared to predictions initialized in May. Furthermore, a regional analysis of sea ice predictability indicates that extent is predictable for longer in the seasonal ice zones of the North Atlantic and North Pacific than in the regions dominated by perennial ice in the central Arctic and marginal seas. In a number of the Eurasian shelf seas, which are important for Arctic shipping, only the forecasts initialized in July have continuous skill during the first summer. In contrast, predictability of ice volume persists for over 2 yr in the central Arctic but less in other regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phylogenetic comparative methods are increasingly used to give new insights into the dynamics of trait evolution in deep time. For continuous traits the core of these methods is a suite of models that attempt to capture evolutionary patterns by extending the Brownian constant variance model. However, the properties of these models are often poorly understood, which can lead to the misinterpretation of results. Here we focus on one of these models – the Ornstein Uhlenbeck (OU) model. We show that the OU model is frequently incorrectly favoured over simpler models when using Likelihood ratio tests, and that many studies fitting this model use datasets that are small and prone to this problem. We also show that very small amounts of error in datasets can have profound effects on the inferences derived from OU models. Our results suggest that simulating fitted models and comparing with empirical results is critical when fitting OU and other extensions of the Brownian model. We conclude by making recommendations for best practice in fitting OU models in phylogenetic comparative analyses, and for interpreting the parameters of the OU model.