109 resultados para Quantitative Precipitation Forecasts


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantitative estimates of temperature and precipitation change during the late Pleistocene and Holocene have been difficult to obtain for much of the lowland Neotropics. Using two published lacustrine pollen records and a climate-vegetation model based on the modern abundance distributions of 154 Neotropical plant families, we demonstrate how family-level counts of fossil pollen can be used to quantitatively reconstruct tropical paleoclimate and provide needed information on historic patterns of climatic change. With this family-level analysis, we show that one area of the lowland tropics, northeastern Bolivia, experienced cooling (1–3 °C) and drying (400 mm/yr), relative to present, during the late Pleistocene (50,000–12,000 calendar years before present [cal. yr B.P.]). Immediately prior to the Last Glacial Maximum (LGM, ca. 21,000 cal. yr B.P.), we observe a distinct transition from cooler temperatures and variable precipitation to a period of warmer temperatures and relative dryness that extends to the middle Holocene (5000–3000 cal. yr B.P.). This prolonged reduction in precipitation occurs against the backdrop of increasing atmospheric CO2 concentrations, indicating that the presence of mixed savanna and dry-forest communities in northeastern Bolivia durng the LGM was not solely the result of low CO2 levels, as suggested previously, but also lower precipitation. The results of our analysis demonstrate the potential for using the distribution and abundance structure of modern Neotropical plant families to infer paleoclimate from the fossil pollen record.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A recent field campaign in southwest England used numerical modeling integrated with aircraft and radar observations to investigate the dynamic and microphysical interactions that can result in heavy convective precipitation. The COnvective Precipitation Experiment (COPE) was a joint UK-US field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly due to the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the US. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve NWP model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the UK BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360-deg volume scans over 10 elevation angles approximately every 5 minutes, and was augmented by two UK Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper: (i) provides an overview of the COPE field campaign and the resulting dataset; (ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone; and (iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution and variability of water vapor and its links with radiative cooling and latent heating via precipitation are crucial to understanding feedbacks and processes operating within the climate system. Column-integrated water vapor (CWV) and additional variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) are utilized to quantify the spatial and temporal variability in tropical water vapor over the period 1979–2001. The moisture variability is partitioned between dynamical and thermodynamic influences and compared with variations in precipitation provided by the Climate Prediction Center Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP). The spatial distribution of CWV is strongly determined by thermodynamic constraints. Spatial variability in CWV is dominated by changes in the large-scale dynamics, in particular associated with the El Niño–Southern Oscillation (ENSO). Trends in CWV are also dominated by dynamics rather than thermodynamics over the period considered. However, increases in CWV associated with changes in temperature are significant over the equatorial east Pacific when analyzing interannual variability and over the north and northwest Pacific when analyzing trends. Significant positive trends in CWV tend to predominate over the oceans while negative trends in CWV are found over equatorial Africa and Brazil. Links between changes in CWV and vertical motion fields are identified over these regions and also the equatorial Atlantic. However, trends in precipitation are generally incoherent and show little association with the CWV trends. This may in part reflect the inadequacies of the precipitation data sets and reanalysis products when analyzing decadal variability. Though the dynamic component of CWV is a major factor in determining precipitation variability in the tropics, in some regions/seasons the thermodynamic component cancels its effect on precipitation variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A range of forecasts of global oil production made between 1956 and the present day are listed. For the majority of these the methodology used to generate the forecast is described. The paper distinguishes between three types of forecast: group 1-quantitative analyses which predict that global oil production will reach a resource-limited peak in the near term, and certainly before the year 2020; group 2-forecasts that use quantitative methods, but which see no production peak within the forecast's time horizon (typically 2020 or 2030); group 3-nonquantitative analyses that rule out a resource-limited oil peak within the foreseeable future. The paper analyses these forecast types and suggests that group 1 forecasts are the most realistic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Kriging interpolation method is combined with an object-based evaluation measure to assess the ability of the UK Met Office's dispersion and weather prediction models to predict the evolution of a plume of tracer as it was transported across Europe. The object-based evaluation method, SAL, considers aspects of the Structure, Amplitude and Location of the pollutant field. The SAL method is able to quantify errors in the predicted size and shape of the pollutant plume, through the structure component, the over- or under-prediction of the pollutant concentrations, through the amplitude component, and the position of the pollutant plume, through the location component. The quantitative results of the SAL evaluation are similar for both models and close to a subjective visual inspection of the predictions. A negative structure component for both models, throughout the entire 60 hour plume dispersion simulation, indicates that the modelled plumes are too small and/or too peaked compared to the observed plume at all times. The amplitude component for both models is strongly positive at the start of the simulation, indicating that surface concentrations are over-predicted by both models for the first 24 hours, but modelled concentrations are within a factor of 2 of the observations at later times. Finally, for both models, the location component is small for the first 48 hours after the start of the tracer release, indicating that the modelled plumes are situated close to the observed plume early on in the simulation, but this plume location error grows at later times. The SAL methodology has also been used to identify differences in the transport of pollution in the dispersion and weather prediction models. The convection scheme in the weather prediction model is found to transport more pollution vertically out of the boundary layer into the free troposphere than the dispersion model convection scheme resulting in lower pollutant concentrations near the surface and hence a better forecast for this case study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assimilation of Doppler radar radial winds for high resolution NWP may improve short term forecasts of convective weather. Using insects as the radar target, it is possible to provide wind observations during convective development. This study aims to explore the potential of these new observations, with three case studies. Radial winds from insects detected by 4 operational weather radars were assimilated using 3D-Var into a 1.5 km resolution version of the Met Office Unified Model, using a southern UK domain and no convective parameterization. The effect on the analysis wind was small, with changes in direction and speed up to 45° and 2 m s−1 respectively. The forecast precipitation was perturbed in space and time but not substantially modified. Radial wind observations from insects show the potential to provide small corrections to the location and timing of showers but not to completely relocate convergence lines. Overall, quantitative analysis indicated the observation impact in the three case studies was small and neutral. However, the small sample size and possible ground clutter contamination issues preclude unequivocal impact estimation. The study shows the potential positive impact of insect winds; future operational systems using dual polarization radars which are better able to discriminate between insects and clutter returns should provided a much greater impact on forecasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessment of changes in precipitation (P) as a function of percentiles of surface temperature (T) and 500 hPa vertical velocity (ω) are presented, considering present-day simulations and observational estimates from the Global Precipitation Climatology Project (GPCP) combined with the European Centre for Medium-range Weather Forecasts Interim reanalysis (ERA Interim). There is a tendency for models to overestimate P in the warm, subsiding regimes compared to GPCP, in some cases by more than 100%, while many models underestimate P in the moderate temperature regimes. Considering climate change projections between 1980–1999 and 2080–2099, responses in P are characterised by dP/dT ≥ 4%/K over the coldest 10–20% of land points and over warm, ascending ocean points while P declines over the warmest, descending regimes (dP/dT ∼ − 4%/K for model ensemble means). The reduced Walker circulation limits this contrasting dP/dT response in the tropical wet and dry regimes only marginally. Around 70% of the global surface area exhibits a consistent sign for dP/dT in at least 6 out of a 7-member model ensemble when considering P composites in terms of dynamic regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach is presented for the evaluation of circulation type classifications (CTCs) in terms of their capability to predict surface climate variations. The approach is analogous to that for probabilistic meteorological forecasts and is based on the Brier skill score. This score is shown to take a particularly simple form in the context of CTCs and to quantify the resolution of a climate variable by the classifications. The sampling uncertainty of the skill can be estimated by means of nonparametric bootstrap resampling. The evaluation approach is applied for a systematic intercomparison of 71 CTCs (objective and manual, from COST Action 733) with respect to their ability to resolve daily precipitation in the Alpine region. For essentially all CTCs, the Brier skill score is found to be higher for weak and moderate compared to intense precipitation, for winter compared to summer, and over the north and west of the Alps compared to the south and east. Moreover, CTCs with a higher number of types exhibit better skill than CTCs with few types. Among CTCs with comparable type number, the best automatic classifications are found to outperform the best manual classifications. It is not possible to single out one ‘best’ classification for Alpine precipitation, but there is a small group showing particularly high skill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we systematically compare a wide range of observational and numerical precipitation datasets for Central Asia. Data considered include two re-analyses, three datasets based on direct observations, and the output of a regional climate model simulation driven by a global re-analysis. These are validated and intercompared with respect to their ability to represent the Central Asian precipitation climate. In each of the datasets, we consider the mean spatial distribution and the seasonal cycle of precipitation, the amplitude of interannual variability, the representation of individual yearly anomalies, the precipitation sensitivity (i.e. the response to wet and dry conditions), and the temporal homogeneity of precipitation. Additionally, we carried out part of these analyses for datasets available in real time. The mutual agreement between the observations is used as an indication of how far these data can be used for validating precipitation data from other sources. In particular, we show that the observations usually agree qualitatively on anomalies in individual years while it is not always possible to use them for the quantitative validation of the amplitude of interannual variability. The regional climate model is capable of improving the spatial distribution of precipitation. At the same time, it strongly underestimates summer precipitation and its variability, while interannual variations are well represented during the other seasons, in particular in the Central Asian mountains during winter and spring

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many different performance measures have been developed to evaluate field predictions in meteorology. However, a researcher or practitioner encountering a new or unfamiliar measure may have difficulty in interpreting its results, which may lead to them avoiding new measures and relying on those that are familiar. In the context of evaluating forecasts of extreme events for hydrological applications, this article aims to promote the use of a range of performance measures. Some of the types of performance measures that are introduced in order to demonstrate a six-step approach to tackle a new measure. Using the example of the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble precipitation predictions for the Danube floods of July and August 2002, to show how to use new performance measures with this approach and the way to choose between different performance measures based on their suitability for the task at hand is shown. Copyright © 2008 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel analytical model for mixed-phase, unblocked and unseeded orographic precipitation with embedded convection is developed and evaluated. The model takes an idealised background flow and terrain geometry, and calculates the area-averaged precipitation rate and other microphysical quantities. The results provide insight into key physical processes, including cloud condensation, vapour deposition, evaporation, sublimation, as well as precipitation formation and sedimentation (fallout). To account for embedded convection in nominally stratiform clouds, diagnostics for purely convective and purely stratiform clouds are calculated independently and combined using weighting functions based on relevant dynamical and microphysical time scales. An in-depth description of the model is presented, as well as a quantitative assessment of its performance against idealised, convection-permitting numerical simulations with a sophisticated microphysics parameterisation. The model is found to accurately reproduce the simulation diagnostics over most of the parameter space considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flood prediction systems rely on good quality precipitation input data and forecasts to drive hydrological models. Most precipitation data comes from daily stations with a good spatial coverage. However, some flood events occur on sub-daily time scales and flood prediction systems could benefit from using models calibrated on the same time scale. This study compares precipitation data aggregated from hourly stations (HP) and data disaggregated from daily stations (DP) with 6-hourly forecasts from ECMWF over the time period 1 October 2006–31 December 2009. The HP and DP data sets were then used to calibrate two hydrological models, LISFLOOD-RR and HBV, and the latter was used in a flood case study. The HP scored better than the DP when evaluated against the forecast for lead times up to 4 days. However, this was not translated in the same way to the hydrological modelling, where the models gave similar scores for simulated runoff with the two datasets. The flood forecasting study showed that both datasets gave similar hit rates whereas the HP data set gave much smaller false alarm rates (FAR). This indicates that using sub-daily precipitation in the calibration and initiation of hydrological models can improve flood forecasting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model. This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forecasts of precipitation and water vapor made by the Met Office global numerical weather prediction (NWP) model are evaluated using products from satellite observations by the Special Sensor Microwave Imager/Sounder (SSMIS) and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) for June–September 2011, with a focus on tropical areas (308S–308N). Consistent with previous studies, the predicted diurnal cycle of precipitation peaks too early (by ;3 h) and the amplitude is too strong over both tropical ocean and land regions. Most of the wet and dry precipitation biases, particularly those over land, can be explained by the diurnal-cycle discrepancies. An overall wet bias over the equatorial Pacific and Indian Oceans and a dry bias over the western Pacific warmpool and India are linked with similar biases in the climate model, which shares common parameterizations with the NWP version. Whereas precipitation biases develop within hours in the NWP model, underestimates in water vapor (which are assimilated by the NWP model) evolve over the first few days of the forecast. The NWP simulations are able to capture observed daily-to-intraseasonal variability in water vapor and precipitation, including fluctuations associated with tropical cyclones.