23 resultados para Qualitative analysis of enzymes from different regions of the digestive tract
Resumo:
The Stochastic Diffusion Search (SDS) was developed as a solution to the best-fit search problem. Thus, as a special case it is capable of solving the transform invariant pattern recognition problem. SDS is efficient and, although inherently probabilistic, produces very reliable solutions in widely ranging search conditions. However, to date a systematic formal investigation of its properties has not been carried out. This thesis addresses this problem. The thesis reports results pertaining to the global convergence of SDS as well as characterising its time complexity. However, the main emphasis of the work, reports on the resource allocation aspect of the Stochastic Diffusion Search operations. The thesis introduces a novel model of the algorithm, generalising an Ehrenfest Urn Model from statistical physics. This approach makes it possible to obtain a thorough characterisation of the response of the algorithm in terms of the parameters describing the search conditions in case of a unique best-fit pattern in the search space. This model is further generalised in order to account for different search conditions: two solutions in the search space and search for a unique solution in a noisy search space. Also an approximate solution in the case of two alternative solutions is proposed and compared with predictions of the extended Ehrenfest Urn model. The analysis performed enabled a quantitative characterisation of the Stochastic Diffusion Search in terms of exploration and exploitation of the search space. It appeared that SDS is biased towards the latter mode of operation. This novel perspective on the Stochastic Diffusion Search lead to an investigation of extensions of the standard SDS, which would strike a different balance between these two modes of search space processing. Thus, two novel algorithms were derived from the standard Stochastic Diffusion Search, ‘context-free’ and ‘context-sensitive’ SDS, and their properties were analysed with respect to resource allocation. It appeared that they shared some of the desired features of their predecessor but also possessed some properties not present in the classic SDS. The theory developed in the thesis was illustrated throughout with carefully chosen simulations of a best-fit search for a string pattern, a simple but representative domain, enabling careful control of search conditions.
Resumo:
(ABR) is of fundamental importance to the investiga- tion of the auditory system behavior, though its in- terpretation has a subjective nature because of the manual process employed in its study and the clinical experience required for its analysis. When analyzing the ABR, clinicians are often interested in the identi- fication of ABR signal components referred to as Jewett waves. In particular, the detection and study of the time when these waves occur (i.e., the wave la- tency) is a practical tool for the diagnosis of disorders affecting the auditory system. In this context, the aim of this research is to compare ABR manual/visual analysis provided by different examiners. Methods: The ABR data were collected from 10 normal-hearing subjects (5 men and 5 women, from 20 to 52 years). A total of 160 data samples were analyzed and a pair- wise comparison between four distinct examiners was executed. We carried out a statistical study aiming to identify significant differences between assessments provided by the examiners. For this, we used Linear Regression in conjunction with Bootstrap, as a me- thod for evaluating the relation between the responses given by the examiners. Results: The analysis sug- gests agreement among examiners however reveals differences between assessments of the variability of the waves. We quantified the magnitude of the ob- tained wave latency differences and 18% of the inves- tigated waves presented substantial differences (large and moderate) and of these 3.79% were considered not acceptable for the clinical practice. Conclusions: Our results characterize the variability of the manual analysis of ABR data and the necessity of establishing unified standards and protocols for the analysis of these data. These results may also contribute to the validation and development of automatic systems that are employed in the early diagnosis of hearing loss.
Resumo:
The response of monsoon circulation in the northern and southern hemisphere to 6 ka orbital forcing has been examined in 17 atmospheric general circulation models and 11 coupled ocean–atmosphere general circulation models. The atmospheric response to increased summer insolation at 6 ka in the northern subtropics strengthens the northern-hemisphere summer monsoons and leads to increased monsoonal precipitation in western North America, northern Africa and China; ocean feedbacks amplify this response and lead to further increase in monsoon precipitation in these three regions. The atmospheric response to reduced summer insolation at 6 ka in the southern subtropics weakens the southern-hemisphere summer monsoons and leads to decreased monsoonal precipitation in northern South America, southern Africa and northern Australia; ocean feedbacks weaken this response so that the decrease in rainfall is smaller than might otherwise be expected. The role of the ocean in monsoonal circulation in other regions is more complex. There is no discernable impact of orbital forcing in the monsoon region of North America in the atmosphere-only simulations but a strong increase in precipitation in the ocean–atmosphere simulations. In contrast, there is a strong atmospheric response to orbital forcing over northern India but ocean feedback reduces the strength of the change in the monsoon although it still remains stronger than today. Although there are differences in magnitude and exact location of regional precipitation changes from model to model, the same basic mechanisms are involved in the oceanic modulation of the response to orbital forcing and this gives rise to a robust ensemble response for each of the monsoon systems. Comparison of simulated and reconstructed changes in regional climate suggest that the coupled ocean–atmosphere simulations produce more realistic changes in the northern-hemisphere monsoons than atmosphere-only simulations, though they underestimate the observed changes in precipitation in all regions. Evaluation of the southern-hemisphere monsoons is limited by lack of quantitative reconstructions, but suggest that model skill in simulating these monsoons is limited.
Resumo:
The INSIG2 rs7566605 polymorphism was identified for obesity (BMI> or =30 kg/m(2)) in one of the first genome-wide association studies, but replications were inconsistent. We collected statistics from 34 studies (n = 74,345), including general population (GP) studies, population-based studies with subjects selected for conditions related to a better health status ('healthy population', HP), and obesity studies (OB). We tested five hypotheses to explore potential sources of heterogeneity. The meta-analysis of 27 studies on Caucasian adults (n = 66,213) combining the different study designs did not support overall association of the CC-genotype with obesity, yielding an odds ratio (OR) of 1.05 (p-value = 0.27). The I(2) measure of 41% (p-value = 0.015) indicated between-study heterogeneity. Restricting to GP studies resulted in a declined I(2) measure of 11% (p-value = 0.33) and an OR of 1.10 (p-value = 0.015). Regarding the five hypotheses, our data showed (a) some difference between GP and HP studies (p-value = 0.012) and (b) an association in extreme comparisons (BMI> or =32.5, 35.0, 37.5, 40.0 kg/m(2) versus BMI<25 kg/m(2)) yielding ORs of 1.16, 1.18, 1.22, or 1.27 (p-values 0.001 to 0.003), which was also underscored by significantly increased CC-genotype frequencies across BMI categories (10.4% to 12.5%, p-value for trend = 0.0002). We did not find evidence for differential ORs (c) among studies with higher than average obesity prevalence compared to lower, (d) among studies with BMI assessment after the year 2000 compared to those before, or (e) among studies from older populations compared to younger. Analysis of non-Caucasian adults (n = 4889) or children (n = 3243) yielded ORs of 1.01 (p-value = 0.94) or 1.15 (p-value = 0.22), respectively. There was no evidence for overall association of the rs7566605 polymorphism with obesity. Our data suggested an association with extreme degrees of obesity, and consequently heterogeneous effects from different study designs may mask an underlying association when unaccounted for. The importance of study design might be under-recognized in gene discovery and association replication so far.
Resumo:
The semi-distributed, dynamic INCA-N model was used to simulate the behaviour of dissolved inorganic nitrogen (DIN) in two Finnish research catchments. Parameter sensitivity and model structural uncertainty were analysed using generalized sensitivity analysis. The Mustajoki catchment is a forested upstream catchment, while the Savijoki catchment represents intensively cultivated lowlands. In general, there were more influential parameters in Savijoki than Mustajoki. Model results were sensitive to N-transformation rates, vegetation dynamics, and soil and river hydrology. Values of the sensitive parameters were based on long-term measurements covering both warm and cold years. The highest measured DIN concentrations fell between minimum and maximum values estimated during the uncertainty analysis. The lowest measured concentrations fell outside these bounds, suggesting that some retention processes may be missing from the current model structure. The lowest concentrations occurred mainly during low flow periods; so effects on total loads were small.
Resumo:
We present an analysis of the accuracy of the method introduced by Lockwood et al. (1994) for the determination of the magnetopause reconnection rate from the dispersion of precipitating ions in the ionospheric cusp region. Tests are made by applying the method to synthesised data. The simulated cusp ion precipitation data are produced by an analytic model of the evolution of newly-opened field lines, along which magnetosheath ions are firstly injected across the magnetopause and then dispersed as they propagate into the ionosphere. The rate at which these newly opened field lines are generated by reconnection can be varied. The derived reconnection rate estimates are then compared with the input variation to the model and the accuracy of the method assessed. Results are presented for steady-state reconnection, for continuous reconnection showing a sine-wave variation in rate and for reconnection which only occurs in square wave pulses. It is found that the method always yields the total flux reconnected (per unit length of the open-closed field-line boundary) to within an accuracy of better than 5%, but that pulses tend to be smoothed so that the peak reconnection rate within the pulse is underestimated and the pulse length is overestimated. This smoothing is reduced if the separation between energy channels of the instrument is reduced; however this also acts to increase the experimental uncertainty in the estimates, an effect which can be countered by improving the time resolution of the observations. The limited time resolution of the data is shown to set a minimum reconnection rate below which the method gives spurious short-period oscillations about the true value. Various examples of reconnection rate variations derived from cusp observations are discussed in the light of this analysis.
Resumo:
Predictions of twenty-first century sea level change show strong regional variation. Regional sea level change observed by satellite altimetry since 1993 is also not spatially homogenous. By comparison with historical and pre-industrial control simulations using the atmosphere–ocean general circulation models (AOGCMs) of the CMIP5 project, we conclude that the observed pattern is generally dominated by unforced (internal generated) variability, although some regions, especially in the Southern Ocean, may already show an externally forced response. Simulated unforced variability cannot explain the observed trends in the tropical Pacific, but we suggest that this is due to inadequate simulation of variability by CMIP5 AOGCMs, rather than evidence of anthropogenic change. We apply the method of pattern scaling to projections of sea level change and show that it gives accurate estimates of future local sea level change in response to anthropogenic forcing as simulated by the AOGCMs under RCP scenarios, implying that the pattern will remain stable in future decades. We note, however, that use of a single integration to evaluate the performance of the pattern-scaling method tends to exaggerate its accuracy. We find that ocean volume mean temperature is generally a better predictor than global mean surface temperature of the magnitude of sea level change, and that the pattern is very similar under the different RCPs for a given model. We determine that the forced signal will be detectable above the noise of unforced internal variability within the next decade globally and may already be detectable in the tropical Atlantic.
Resumo:
This article contains raw and processed data related to research published by Bryant et al. [1]. Data was obtained by MS-based proteomics, analysing trichome-enriched, trichome-depleted and whole leaf samples taken from the medicinal plant Artemisia annua and searching the acquired MS/MS data against a recently published contig database [2] and other genomic and proteomic sequence databases for comparison. The processed data shows that an order-of-magnitude more proteins have been identified from trichome-enriched Artemisia annua samples in comparison to previously published data. Proteins known to have a role in the biosynthesis of artemisinin and other highly abundant proteins were found which imply additional enzymatically driven processes occurring within the trichomes that are significant for the biosynthesis of artemisinin.