52 resultados para QUASI-PERPENDICULAR SHOCKS
Resumo:
Recent research documents the importance of uncertainty in determining macroeconomic outcomes, but little is known about the transmission of uncertainty across such outcomes. This paper examines the response of uncertainty about inflation and output growth to shocks documenting statistically significant size and sign bias and spillover effects. Uncertainty about inflation is a determinant of output uncertainty, whereas higher growth volatility tends to raise inflation volatility. Both inflation and growth volatility respond asymmetrically to positive and negative shocks. Negative growth and inflation shocks lead to higher and more persistent uncertainty than shocks of equal magnitude but opposite sign.
Resumo:
The authors describe the design of a fuzzy logic controller for the control of a planar two-link manipulator. The plant is quasi-decoupled with respect to gravity. Complete decoupling is not achieved due to the nonoptimal nature of the expert rules. The performance of the fuzzy controller is compared to that of the critically damped computed torque controller. Results are presented complete with robustness tests.
Resumo:
A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.
Resumo:
Currently, most operational forecasting models use latitude-longitude grids, whose convergence of meridians towards the poles limits parallel scaling. Quasi-uniform grids might avoid this limitation. Thuburn et al, JCP, 2009 and Ringler et al, JCP, 2010 have developed a method for arbitrarily-structured, orthogonal C-grids (TRiSK), which has many of the desirable properties of the C-grid on latitude-longitude grids but which works on a variety of quasi-uniform grids. Here, five quasi-uniform, orthogonal grids of the sphere are investigated using TRiSK to solve the shallow-water equations. We demonstrate some of the advantages and disadvantages of the hexagonal and triangular icosahedra, a Voronoi-ised cubed sphere, a Voronoi-ised skipped latitude-longitude grid and a grid of kites in comparison to a full latitude-longitude grid. We will show that the hexagonal-icosahedron gives the most accurate results (for least computational cost). All of the grids suffer from spurious computational modes; this is especially true of the kite grid, despite it having exactly twice as many velocity degrees of freedom as height degrees of freedom. However, the computational modes are easiest to control on the hexagonal icosahedron since they consist of vorticity oscillations on the dual grid which can be controlled using a diffusive advection scheme for potential vorticity.
Resumo:
A series of experiments are described that examine the sensitivity of the northern-hemisphere winter evolution to the equatorial quasi-biennial oscillation (QBO). The prime tool for the experiments is a stratosphere-mesosphere model. The model is integrated over many years with the modelled equatorial winds relaxed towards observed values in order to simulate a realistic QBO. In experiment A the equatorial winds are relaxed towards Singapore radiosonde observations in the height region 16-32 km. In contrast to previous modelling studies, the Holton-Tan relationship (warm/cold winters associated with easterly/westerly QBO winds in the lower stratosphere) is absent. However, in a second experiment (run B) in which the equatorial winds are relaxed towards rocketsonde data over the extended height range 16-58 km, a realistic Holton-Tan relationship is reproduced. A series of further studies are described that explore in more detail the sensitivity to various equatorial height regions and to the bottom-boundary forcing. The experiments suggest that the evolution of the northern-hemisphere winter circulation is sensitive to equatorial winds throughout the whole depth of the stratosphere and not just to the lower-stratospheric wind direction as previously assumed.
Resumo:
Existing numerical characterizations of the optimal income tax have been based on a limited number of model specifications. As a result, they do not reveal which properties are general. We determine the optimal tax in the quasi-linear model under weaker assumptions than have previously been used; in particular, we remove the assumption of a lower bound on the utility of zero consumption and the need to permit negative labor incomes. A Monte Carlo analysis is then conducted in which economies are selected at random and the optimal tax function constructed. The results show that in a significant proportion of economies the marginal tax rate rises at low skills and falls at high. The average tax rate is equally likely to rise or fall with skill at low skill levels, rises in the majority of cases in the centre of the skill range, and falls at high skills. These results are consistent across all the specifications we test. We then extend the analysis to show that these results also hold for Cobb-Douglas utility.
Resumo:
An investigation is presented of a quasi-stationary convective system (QSCS) which occurred over the UK Southwest Peninsula on 21 July 2010. This system was remarkably similar in its location and structure to one which caused devastating flash flooding in the coastal village of Boscastle, Cornwall on 16 August 2004. However, in the 2010 case rainfall accumulations were around four times smaller and no flooding was recorded. The more extreme nature of the Boscastle case is shown to be related to three factors: (1) higher rain rates, associated with a warmer and moister tropospheric column and deeper convective clouds; (2) a more stationary system, due to slower evolution of the large-scale flow; and (3) distribution of the heaviest precipitation over fewer river catchments. Overall, however, the synoptic setting of the two events was broadly similar, suggesting that such conditions favour the development of QSCSs over the Southwest Peninsula. A numerical simulation of the July 2010 event was performed using a 1.5-km grid length configuration of the Met Office Unified Model. This reveals that convection was repeatedly initiated through lifting of low-level air parcels along a quasi-stationary coastal convergence line. Sensitivity tests are used to show that this convergence line was a sea breeze front which temporarily stalled along the coastline due to the retarding influence of an offshore-directed background wind component. Several deficiencies are noted in the 1.5-km model’s representation of the storm system, including delayed convective initiation; however, significant improvements are observed when the grid length is reduced to 500 m. These result in part from an improved representation of the convergence line, which enhances the associated low-level ascent allowing air parcels to more readily reach their level of free convection. The implications of this finding for forecasting convective precipitation are discussed.
Resumo:
In this paper we study Dirichlet convolution with a given arithmetical function f as a linear mapping 'f that sends a sequence (an) to (bn) where bn = Pdjn f(d)an=d.
We investigate when this is a bounded operator on l2 and ¯nd the operator norm. Of particular interest is the case f(n) = n¡® for its connection to the Riemann zeta
function on the line 1, 'f is bounded with k'f k = ³(®). For the unbounded case, we show that 'f : M2 ! M2 where M2 is the subset of l2 of multiplicative sequences, for many f 2 M2. Consequently, we study the `quasi'-norm sup kak = T a 2M2 k'fak kak
for large T, which measures the `size' of 'f on M2. For the f(n) = n¡® case, we show this quasi-norm has a striking resemblance to the conjectured maximal order of
j³(® + iT )j for ® > 12 .
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves. The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40. It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.
Resumo:
The quasi-biennial oscillation (QBO) in the equatorial zonal wind is an outstanding phenomenon of the atmosphere. The QBO is driven by a broad spectrum of waves excited in the tropical troposphere and modulates transport and mixing of chemical compounds in the whole middle atmosphere. Therefore, the simulation of the QBO in general circulation models and chemistry climate models is an important issue. Here, aspects of the climatology and forcing of a spontaneously occurring QBO in a middle-atmosphere model are evaluated, and its influence on the climate and variability of the tropical middle atmosphere is investigated. Westerly and easterly phases are considered separately, and 40-yr ECMWF Re-Analysis (ERA-40) data are used as a reference where appropriate. It is found that the simulated QBO is realistic in many details. Resolved large-scale waves are particularly important for the westerly phase, while parameterized gravity wave drag is more important for the easterly phase. Advective zonal wind tendencies are important for asymmetries between westerly and easterly phases, as found for the suppression of the easterly phase downward propagation. The simulation of the QBO improves the tropical upwelling and the atmospheric tape recorder compared to a model without a QBO. The semiannual oscillation is simulated realistically only if the QBO is represented. In sensitivity tests, it is found that the simulated QBO is strongly sensitive to changes in the gravity wave sources. The sensitivity to the tested range of horizontal resolutions is small. The stratospheric vertical resolution must be better than 1 km to simulate a realistic QBO.
Resumo:
The tropical tropopause is considered to be the main region of upward transport of tropospheric air carrying water vapor and other tracers to the tropical stratosphere. The lower tropical stratosphere is also the region where the quasi-biennial oscillation (QBO) in the zonal wind is observed. The QBO is positioned in the region where the upward transport of tropospheric tracers to the overworld takes place. Hence the QBO can in principle modulate these transports by its secondary meridional circulation. This modulation is investigated in this study by an analysis of general circulation model (GCM) experiments with an assimilated QBO. The experiments show, first, that the temperature signal of the QBO modifies the specific humidity in the air transported upward and, second, that the secondary meridional circulation modulates the velocity of the upward transport. Thus during the eastward phase of the QBO the upward moving air is moister and the upward velocity is less than during the westward phase of the QBO. It was further found that the QBO period is too short to allow an equilibration of the moisture in the QBO region. This causes a QBO signal of the moisture which is considerably smaller than what could be obtained in the limiting case of indefinitely long QBO phases. This also allows a high sensitivity of the mean moisture over a QBO cycle to the El Niño-Southern Oscillation (ENSO) phenomena or major tropical volcanic eruptions. The interplay of sporadic volcanic eruptions, ENSO, and QBO can produce low-frequency variability in the water vapor content of the tropical stratosphere, which renders the isolation of the QBO signal in observational data of water vapor in the equatorial lower stratosphere difficult.