37 resultados para Public Transport Accessibility Level (PTAL)
Resumo:
This paper examines the evolution of public rights of access to private land in England and Wales. Since the Eighteenth Century the administration and protection of these rights has been though a form of public/private partnership in which the judiciary, while maintaining the dominance of private property, have safeguarded de facto public access by refusing consistently to punish simple trespass. While this situation has been modified, principally by post-World War II legislation, to allow for some formalisation of access arrangements and consequent compensation to landowners in areas of high recreational pressure and low legal accessibility, recent policy initiatives suggest that the balance of the partnership has now shifted in favour of landowners. In particular, the new access payment schemes, developed by the UK Government in response to the European Commission's Agri-Environment Regulations, identify the landowner as the beneficiary of the partnership, financed by tax revenue and justified on the spurious basis of improved 'access provision'. As such the State, as the former upholder of citizen rights, now assumes the duplicitous position of underwriting private property ownership through the commodification of access, while proclaiming a significant improvement in citizens' access rights.
Resumo:
Since the Eighteenth Century the protection of public recreational access to private land has been maintained by the state through a mixture of legal rights of passage and the safeguarding of certain de facto access rights. While this situation has been modified in the last fifty years to facilitate some formalisation of access arrangements and landowner compensation in areas of high recreational pressure and low legal accessibility, recent policies indicate that a shift from public to private rights is underway. At the core of this paradigm shift are the new access payment schemes introduced as part of the restructuring of the European Common Agricultural Policy. Under these schemes landowners are now paid for 'supplying' recreational access, with the state, as the former upholder of citizen rights, now assuming the duplicitous position of further underwriting private property ownership through the effective commodification of access, while simultaneously proclaiming significant improvements in citizens' access rights.
Resumo:
In this study, differences at the genetic level of 37 Salmonella Enteritidis strains from five phage types (PTs) were compared using comparative genomic hybridization (CGH) to assess differences between PTs. There were approximately 400 genes that differentiated prevalent (4, 6, 8 and 13a) and sporadic (11) PTs, of which 35 were unique to prevalent PTs, including six plasmid-borne genes, pefA, B, C, D, srgC and rck, and four chromosomal genes encoding putative amino acid transporters. Phenotype array studies also demonstrated that strains from prevalent PTs were less susceptible to urea stress and utilized L-histidine, L-glutamine, L-proline, L-aspartic acid, gly-asn and gly-gln more efficiently than PT11 strains. Complementation of a PT11 strain with the transporter genes from PT4 resulted in a significant increase in utilization of the amino acids and reduced susceptibility to urea stress. In epithelial cell association assays, PT11 strains were less invasive than other prevalent PTs. Most strains from prevalent PTs were better biofilm formers at 37 degrees C than at 28 degrees C, whilst the converse was true for PT11 strains. Collectively, the results indicate that genetic and corresponding phenotypic differences exist between strains of the prevalent PTs 4, 6, 8 and 13a and non-prevalent PT11 strains that are likely to provide a selective advantage for strains from the former PTs and could help them to enter the food chain and cause salmonellosis.
Resumo:
Glutamate uptake by astrocytes is fundamentally important in the regulation of CNS function. Disruption of uptake can lead to excitotoxicity and is implicated in various neurodegenerative processes as well as a consequence of hypoxic/ischemic events. Here, we investigate the effect of hypoxia on activity and expression of the key glutamate transporters excitatory amino acid transporter 1 (EAAT1) [GLAST (glutamate-aspartate transporter)] and EAAT2 [GLT-1 (glutamate transporter 1)]. Electrogenic, Na+-dependent glutamate uptake was monitored via whole-cell patch-clamp recordings from cortical astrocytes. Under hypoxic conditions (2.5 and 1% O2 exposure for 24 h), glutamate uptake was significantly reduced, and pharmacological separation of uptake transporter subtypes suggested that the EAAT2 subtype was preferentially reduced relative to the EAAT1. This suppression was confirmed at the level of EAAT protein expression (via Western blots) and mRNA levels (via real-time PCR). These effects of hypoxia to inhibit glutamate uptake current and EAAT protein levels were not replicated by desferrioxamine, cobalt, FG0041, or FG4496, agents known to mimic effects of hypoxia mediated via the transcriptional regulator, hypoxia-inducible factor (HIF). Furthermore, the effects of hypoxia were not prevented by topotecan, which prevents HIF accumulation. In stark contrast, inhibition of nuclear factor-kappaB (NF-kappaB) with SN50 fully prevented the effects of hypoxia on glutamate uptake and EAAT expression. Our results indicate that prolonged hypoxia can suppress glutamate uptake in astrocytes and that this effect requires activation of NF-kappaB but not of HIF. Suppression of glutamate uptake via this mechanism may be an important contributory factor in hypoxic/ischemic triggered glutamate excitotoxicity.
Resumo:
Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides.
Resumo:
A record of dust deposition events between 2009 and 2012 on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow ice core is presented for the first time for this region. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (cf. 20–100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in north-eastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric south-westerly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level and, although these events were less frequent, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centered over or extending towards the Caspian Sea and a weaker southerly or south-easterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterise dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0–2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and the Middle East.
Resumo:
Within the project SPURT (trace gas measurements in the tropopause region) a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52�N) to Faro, Portugal (37�N) through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the streamer features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories. Also mesoscale simulations with a High Resolution Model reveal no direct evidence for convective H2O injection up to this level. Elevated H2O mixing ratios in the ECMWF and HRM are seen only up to about tropopause height at 340 hPa and 270 hPa, respectively, well below flight altitude of about 200 hPa. However, forward tracing of the convective influence as identified by satellite brightness temperature measurements and counts of lightning strokes shows that during this part of the flight the aircraft was closely following the border of an air mass which was heavily impacted by convective activity over Spain and Algeria. This is evidence that deep convection at mid-latitudes may have a large impact on the tracer distribution of the lowermost stratosphere reaching well above the thunderstorms anvils as claimed by recent studies using cloud-resolving models.
Resumo:
The process of global deforestation calls for urgent attention, particularly in South America where deforestation rates have failed to decline over the past 20 years. The main direct cause of deforestation is land conversion to agriculture. We combine data from the FAO and the World Bank for six tropical Southern American countries over the period 1970–2006, estimate a panel data model accounting for various determinants of agricultural land expansion and derive elasticities to quantify the effect of the different independent variables. We investigate whether agricultural intensification, in conjunction with governance factors, has been promoting agricultural expansion, leading to a ‘‘Jevons paradox’’. The paradox occurs if an increase in the productivity of one factor (here agricultural land) leads to its increased, rather than decreased, utilization. We find that for high values of our governance indicators a Jevons paradox exists even for moderate levels of agricultural productivity, leading to an overall expansion of agricultural area. Agricultural expansion is also positively related to the level of service on external debt and population growth, while its association with agricultural exports is only moderate. Finally, we find no evidence of an environmental Kuznets curve, as agricultural area is ultimately positively correlated to per-capita income levels.
Resumo:
Major outer membrane proteins (MOMPs) of Gram negative bacteria are one of the most intensively studied membrane proteins. MOMPs are essential for maintaining the structural integrity of bacterial outer membranes and in adaptation of parasites to their hosts. There is evidence to suggest a role for purified MOMP from Chlamydophila pneumoniae and corresponding MOMP-derived peptides in immune-modulation, leading to a reduced atherosclerotic phenotype in apoE−/− mice via a characteristic dampening of MHC class II activity. The work reported herein tests this hypothesis by employing a combination of homology modelling and docking to examine the detailed molecular interactions that may be responsible. A three-dimensional homology model of the C. pneumoniae MOMP was constructed based on the 14 transmembrane β-barrel crystal structure of the fatty acid transporter from Escherichia coli, which provides a plausible transport mechanism for MOMP. Ligand docking experiments were used to provide details of the possible molecular interactions driving the binding of MOMP-derived peptides to MHC class II alleles known to be strongly associated with inflammation. The docking experiments were corroborated by predictions from conventional immuno-informatic algorithms. This work supports further the use of MOMP in C. pneumoniae as a possible vaccine target and the role of MOMP-derived peptides as vaccine candidates for immune-therapy in chronic inflammation that can result in cardiovascular events.
Resumo:
In 2007, the world reached the unprecedented milestone of half of its people living in cities, and that proportion is projected to be 60% in 2030. The combined effect of global climate change and rapid urban growth, accompanied by economic and industrial development, will likely make city residents more vulnerable to a number of urban environmental problems, including extreme weather and climate conditions, sea-level rise, poor public health and air quality, atmospheric transport of accidental or intentional releases of toxic material, and limited water resources. One fundamental aspect of predicting the future risks and defining mitigation strategies is to understand the weather and regional climate affected by cities. For this reason, dozens of researchers from many disciplines and nations attended the Urban Weather and Climate Workshop.1 Twenty-five students from Chinese universities and institutes also took part. The presentations by the workshop's participants span a wide range of topics, from the interaction between the urban climate and energy consumption in climate-change environments to the impact of urban areas on storms and local circulations, and from the impact of urbanization on the hydrological cycle to air quality and weather prediction.
Resumo:
Pollination services provided by insects play a key role in English crop production and wider ecology. Despite growing evidence of the negative effects of habitat loss on pollinator populations, limited policy support is available to reverse this pressure. One measure that may provide beneficial habitat to pollinators is England’s entry level stewardship agri-environment scheme. This study uses a novel expert survey to develop weights for a range of models which adjust the balance of Entry Level Stewardship options within the current area of spending. The annual costs of establishing and maintaining these option compositions were estimated at £59.3–£12.4 M above current expenditure. Although this produced substantial reduction in private cost:benefit ratios, the benefits of the scheme to pollinator habitat rose by 7–140 %; significantly increasing the public cost:benefit ratio. This study demonstrates that the scheme has significant untapped potential to provide good quality habitat for pollinators across England, even within existing expenditure. The findings should open debate on the costs and benefits of specific entry level stewardship management options and how these can be enhanced to benefit both participants and biodiversity more equitably.
Resumo:
In England at both strategic and operational levels, policy-makers in the public sector have undertaken considerable work on implementing the findings of the Every Child Matters report and subsequently through the Children's Act 2004. Legislation has resulted in many local authorities seeking to implement more holistic approaches to the delivery of children's services. At a strategic level this is demonstrated by the creation of integrated directorate structures providing for a range of services, from education to children's social care. Such services were generally under the management of the Director of Children's Services, holding statutory responsibilities for the delivery of services formally divided into the three sectors of education, health and social services. At a national level, more fundamental policy developments have sought to establish a framework through which policy-makers can address the underlying causes of deprivation, vulnerability and inequality. The Child Poverty Act, 2010, which gained Royal Assent in 2010, provides for a clear intention to reduce the number of children in poverty, acknowledging that ‘the best way to eradicate child poverty is to address the causes of poverty, rather than only treat the symptoms’. However, whilst the policy objectives of both pieces of legislation hold positive aspirations for children and young people, a change of policy direction through a change of government in May 2010 seems to be in direct contrast to the intended focus of these aims. This paper explores the impact of new government policy on the future direction of children's services both at the national and local levels. At the national level, we question the ability of the government to deliver the aspirations of the Child Poverty Act, 2010, given the broad range of influences and factors that can determine the circumstances in which a child may experience poverty. We argue that poverty is not simply an issue of the pressure of financial deprivation, but that economic recession and cuts in government spending will further increase the number of children living in poverty.
Resumo:
Sea level change predicted by the CMIP5 atmosphere–ocean general circulation models (AOGCMs) is not spatially homogeneous. In particular, the sea level change in the North Atlantic is usually characterised by a meridional dipole pattern with higher sea level rise north of 40°N and lower to the south. The spread among models is also high in that region. Here we evaluate the role of surface buoyancy fluxes by carrying out simulations with the FAMOUS low-resolution AOGCM forced by surface freshwater and heat flux changes from CO2-forced climate change experiments with CMIP5 AOGCMs, and by a standard idealised surface freshwater flux applied in the North Atlantic. Both kinds of buoyancy flux change lead to the formation of the sea level dipole pattern, although the effect of the heat flux has a greater magnitude, and is the main cause of the spread of results among the CMIP5 models. By using passive tracers in FAMOUS to distinguish between additional and redistributed buoyancy, we show that the enhanced sea level rise north of 40°N is mainly due to the direct steric effect (the reduction of sea water density) caused by adding heat or freshwater locally. The surface buoyancy forcing also causes a weakening of the Atlantic meridional overturning circulation, and the consequent reduction of the northward ocean heat transport imposes a negative tendency on sea level rise, producing the reduced rise south of 40°N. However, unlike previous authors, we find that this indirect effect of buoyancy forcing is generally less important than the direct one, except in a narrow band along the east coast of the US, where it plays a major role and leads to sea level rise, as found by previous authors.
Resumo:
Selection can favour the evolution of individually costly dispersal if this alleviates competition between relatives. However, conditions that favour altruistic dispersal also mediate selection for other social behaviours, such as public goods cooperation, which in turn is likely to mediate dispersal evolution. Here, we investigate – both experimentally (using bacteria) and theoretically – how social habitat heterogeneity (i.e. the distribution of public goods cooperators and cheats) affects the evolution of dispersal. In addition to recovering the well-known theoretical result that the optimal level of dispersal increases with genetic relatedness of patch mates, we find both mathematically and experimentally that dispersal is always favoured when average patch occupancy is low, but when average patch occupancy is high, the presence of public goods cheats greatly alters selection for dispersal. Specifically, when public goods cheats are localized to the home patch, higher dispersal rates are favoured, but when cheats are present throughout available patches, lower dispersal rates are favoured. These results highlight the importance of other social traits in driving dispersal evolution.
Resumo:
Using a variation of the Nelson-Siegel term structure model we examine the sensitivity of real estate securities in six key global markets to unexpected changes in the level, slop and curvature of the yield curve. Our results confirm the time-sensitive nature of the exposure and sensitivity to interest rates and highlight the importance of considering the entire term structure of interest rates. One issue that is of particular of interest is that despite the 2007-9 financial crisis the importance of unanticipated interest rate risk weakens post 2003. Although the analysis does examine a range of markets the empirical analysis is unable to provide definitive evidence as to whether REIT and property-company markets display heightened or reduced exposure.