58 resultados para Psychologist Role Play
Resumo:
Platelets play a substantial role in cardiovascular disease, and for many years there has been a search for dietary components that are able to inhibit platelet function and therefore decrease the risk of cardiovascular disease. Platelets can be inhibited by alcohol, dietary fats and some antioxidants, including a group of compounds, the polyphenols, found in fruits and vegetables. A number of these compounds have been shown to inhibit platelet function both in vitro and in vivo. In the present study the effects of the hydroxycinnamates and the flavonoid quercetin on platelet activation and cell signalling in vitro were investigated. The hydroxycinnamates inhibited platelet function, although not at levels that can be achieved in human plasma by dietary intervention. However, quercetin inhibited platelet aggregation at levels lower than those previously reported. Quercetin was also found to inhibit intracellular Ca mobilisation and whole-cell tyrosine protein phosphorylation in platelets, which are both processes essential for platelet activation. The effect of polyphenols on platelet aggregation in vivo was also investigated. Twenty subjects followed a low-polyphenol diet for 3 d before and also during supplementation. All subjects were supplemented with a polyphenol-rich meal every lunchtime for 5 d. Platelet aggregation and plasma flavonols were measured at baseline and after 5 d of dietary supplementation. Total plasma flavonoids increased significantly after the dietary intervention period (P = 0.001). However, no significant changes in ex vivo platelet aggregation were observed. Further investigation of the effects of individual polyphenolic compounds on platelet function, both in vitro and in vivo, is required in order to elucidate their role in the relationship between diet and the risk of cardiovascular disease.
Resumo:
A series of eight synthetic self-assembling terminally blocked tripeptides have been studied for gelation. Some of them form gels in various aromatic solvents including benzene, toluene, xylene, and chlorobenzene. It has been found that the protecting groups play an important role in the formation of organogels. It has been observed that, if the C-terminal has been changed from methyl ester to ethyl ester the gelation property does not change significantly (keeping the N-terminal protecting group same), while the change of the protecting group from ethyl ester to isopropyl ester completely abolishes the gelation property. Similarly, keeping the identical C-terminal protecting group (methyl ester) the results of the gelation study indicate that the substitution of N-terminal protection Boc-(tert-butyloxycarbonyl) to Cbz-(benzyloxycarbonyl) does change the gelation property insignificantly, while the change from Boc- to pivaloyl (Piv-) or acetyl (Ac-) group completely eliminates the gelation property. Morphological studies of the dried gels of two of the peptides indicate the presence of an entangled nano-fibrillar network that might be responsible for gelation. FTIR studies of the gels demonstrate that an intermolecular hydrogen bonding network is formed during gelation. Results of X-ray powder diffraction studies for these gelator peptides in different states (dried gels, gel, and bulk solids) reflected that the structure in the wet gel is distinctly different from the dried gel and solid state structures. Single crystal X-ray diffraction studies of a non-gelator peptide, which is structurally similar to the gelator molecules reveal that the peptide forms an antiparallel beta-sheet structure in crystals. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A series of five Ni(II)-complexes containing the same tridentate Schiff base but different monoanionic ligands (N-3(-), NO3-, PhCOO- and NO2-)reveals that the competitive as well as the cooperative role of the monoanions and phenoxo group in bridging the metal ions play the key role in the variation of molecular architecture.
Resumo:
The incidence of obesity has reached alarming levels worldwide, thus increasing the risk of development of metabolic disorders (e.g. type 2 diabetes, coronary heart disease (CHD) and cancer). Among the causes of obesity, diet and lifestyle play a central role. Although the treatment of obesity may appear quite straightforward, by simply re-addressing the balance between energy intake and energy expenditure, practically it has been very challenging. In the search for new therapeutic targets for treatment of obesity and related disorders, the gut microbiota and its activities have been investigated in relation to obesity. The human gut microbiota has already been shown to influence total energy intake and lipid metabolism, particularly through colonic fermentation of undigestible dietary constituents and production of short chain fatty acids (SCFA). Recent studies have highlighted the contribution of the gut microbiota to mammalian metabolism and energy harvested from the diet. A dietary modulation of the gut microbiota and its metabolic output could positively influence host metabolism and, therefore, constitute a potential coadjutant approach in the management of obesity and weight loss.
Resumo:
PURPOSE. To identify the role of Notch signaling in the human corneal epithelium. METHODS. Localization of Notch1, Notch2, Delta1, and Jagged1 in the human corneal epithelium was observed with the use of indirect immunofluorescence microscopy. Gene and protein expression of Notch receptors and ligands in human corneal epithelial cells was determined by RT-PCR and Western blot analysis, respectively. The effects of Notch inhibition (by {gamma}-secretase inhibition) and activation (by recombinant Jagged1) on epithelial cell proliferation (Ki67) and differentiation (CK3) were analyzed after Western blotting and immunocytochemistry. RESULTS. Immunofluorescent labeling localized Notch1 and Notch2 to suprabasal epithelial cell layers, whereas Delta1 and Jagged1 were observed throughout the corneal epithelium. Notch1, Notch2, Delta1, and Jagged1 genes and proteins were expressed in human corneal epithelial cells. {gamma}-Secretase inhibition resulted in decreased Notch1 and Notch2 expression, with an accompanying decrease in Ki67 and increased CK3 expression. The activation of Notch by Jagged1 resulted in the upregulation of active forms of Notch1 and 2 proteins (P < 0.05), with a concurrent increase in Ki67 (P < 0.05) and a decrease in CK3 (P < 0.05) expression. Interestingly, {gamma}-secretase inhibition in a three-dimensional, stratified corneal epithelium equivalent had no effect on Ki67 or CK3 expression. In contrast, Jagged1 activation resulted in decreased CK3 expression (P < 0.05), though neither Notch activation nor inhibition affected cell proliferation in the 3D tissue equivalent. CONCLUSIONS. Notch family members and ligands are expressed in the human corneal epithelium and appear to play pivotal roles in corneal epithelial cell differentiation.
Resumo:
Past research into doll play narratives has been productive in elucidating children's inner experiences, their determinants, and their role in child behaviour problems. The current volume takes this work forward in several directions: first, it indicates the value of designing story stems and coding schemes to address more specific questions about the developmental process of specific syndromes. Second, contributions demonstrate the "added value" provided by children's narratives, over and above information derived from other sources. Third, this recent research enhances our understanding of the role of parental representations and states of mind in influencing children's narratives; how these may come to influence child functioning via co-constructed parent-child dialogues is an important area for future research. Finally, possibilities of extending the clinical utility of doll play narratives are explored.
Arresting developments in the cardiac myocyte cell cycle: Role of cyclin-dependent kinase inhibitors
Resumo:
Like most other cells in the body, foetal and neonatal cardiac myocytes are able to divide and proliferate. However, the ability of these cells to undergo cell division decreases progressively during development such that adult myocytes are unable to divide. A major problem arising from this inability of adult cardiac myocytes to proliferate is that the mature heart is unable to regenerate new myocardial tissue following severe injury, e.g. infarction, which can lead to compromised cardiac pump function and even death. Studies in proliferating cells have identified a group of genes and proteins that controls cell division. These proteins include cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors (CDKIs), which interact with each other to form complexes that are essential for controlling normal cell cycle progression. A variety of other proteins, e.g. the retinoblastoma protein (pRb) and members of the E2F family of transcription factors, also can interact with, and modulate the activities of, these complexes. Despite the major role that these proteins play in other cell types, little was known until recently about their existence and activities in immature (proliferating) or mature (non-proliferating) cardiac myocytes. The reason(s) why cardiac myocytes lose their ability to divide during development remains unknown, but if strategies were developed to understand the mechanisms underlying cardiac myocyte growth, it could open up new avenues for the treatment of cardiovascular disease. In this article, we shall review the function of the cell cycle machinery and outline some of our recent findings pertaining to the involvement of the cell cycle in modulating cardiac myocyte growth and hypertrophy.
Resumo:
With the rising rate of obesity, there is considerable interest in dietary strategies to reduce insulin resistance, a major characteristic of the metabolic syndrome and type 2 diabetes. Diets rich in monounsaturated fatty acids (MUFA) have been suggested as an alternative to low-fat, high-carbohydrate diets to improve glycemic control. However, inconsistent effects have been observed with MUFA-rich diets in both healthy and insulin-resistant individuals. In studies that have reported favorable effects on insulin sensitivity, Mediterranean-style diets have been used that are rich not only in MUFA but also whole-grain foods, fiber, and carbohydrates with a low glycemic index. There is a need for intervention studies to examine the true impact of MUFA-rich oils on glycemic control in both Mediterranean and non-Mediterranean populations. In addition, the metabolic and genotypic status of the participants may also play a role in the inter-individual variability in insulin sensitivity in response to MUFA-rich diets.
Resumo:
OBJECTIVE: Substrate and hormone responses to meals of differing fat content were evaluated in normal subjects in order to investigate mechanisms underlying the regulation of postprandial lipoprotein concentration. DESIGN: A randomised cross-over study with three different meals on three occasions. SETTING: Free-living subjects associated with Surrey University. SUBJECTS: Ten male volunteers (aged 18-23 years) were recruited. INTERVENTIONS: Three test meals containing 20, 40 or 80 g fat but identical carbohydrate and protein content were randomly allocated to volunteers. MAJOR OUTCOME MEASURES: Pre- and postprandial blood samples were taken for the analysis of plasma triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin and glucose-dependent insulinotrophic polypeptide levels and postheparin lipoprotein lipase activity measurements. RESULTS: Peak triacylglycerol concentrations and lipoprotein lipase activity measurements were significantly higher following the 80 g than the 20 g fat meal (P = 0.009 and P = 0.049 respectively). Areas under the glucose-dependent insulinotrophic polypeptide time-response concentration curves were significantly higher following the 80 g compared with the 20 g fat meal (P = 0.04), but no differences in insulin response to the meals were seen. The 30-360 min decrease in the non-esterified fatty acid concentration was less following the 80 g than the 20 g meal (P = 0.001). CONCLUSIONS: The results suggest that glucose-dependent insulinotrophic polypeptide may mediate increased lipoprotein lipase activity in response to fat-containing meals and may play a role in circulating lipoprotein homeostasis. This mechanism may be overloaded with high fat meals with adverse consequences on circulating triacylglycerol and NEFA concentrations.
Resumo:
Bacterioferritin (BFR) from Escherichia coli is a member of the ferritin family of iron storage proteins and has the capacity to store very large amounts of iron as an Fe(3+) mineral inside its central cavity. The ability of organisms to tap into their cellular stores in times of iron deprivation requires that iron must be released from ferritin mineral stores. Currently, relatively little is known about the mechanisms by which this occurs, particularly in prokaryotic ferritins. Here we show that the bis-Met-coordinated heme groups of E. coli BFR, which are not found in other members of the ferritin family, play an important role in iron release from the BFR iron biomineral: kinetic iron release experiments revealed that the transfer of electrons into the internal cavity is the rate-limiting step of the release reaction and that the rate and extent of iron release were significantly increased in the presence of heme. Despite previous reports that a high affinity Fe(2+) chelator is required for iron release, we show that a large proportion of BFR core iron is released in the absence of such a chelator and further that chelators are not passive participants in iron release reactions. Finally, we show that the catalytic ferroxidase center, which is central to the mechanism of mineralization, is not involved in iron release; thus, core mineralization and release processes utilize distinct pathways.
Resumo:
Several studies using ocean–atmosphere general circulation models (GCMs) suggest that the atmospheric component plays a dominant role in the modelled El Niño-Southern Oscillation (ENSO). To help elucidate these findings, the two main atmosphere feedbacks relevant to ENSO, the Bjerknes positive feedback (μ) and the heat flux negative feedback (α), are here analysed in nine AMIP runs of the CMIP3 multimodel dataset. We find that these models generally have improved feedbacks compared to the coupled runs which were analysed in part I of this study. The Bjerknes feedback, μ, is increased in most AMIP runs compared to the coupled run counterparts, and exhibits both positive and negative biases with respect to ERA40. As in the coupled runs, the shortwave and latent heat flux feedbacks are the two dominant components of α in the AMIP runs. We investigate the mechanisms behind these two important feedbacks, in particular focusing on the strong 1997–1998 El Niño. Biases in the shortwave flux feedback, α SW, are the main source of model uncertainty in α. Most models do not successfully represent the negative αSW in the East Pacific, primarily due to an overly strong low-cloud positive feedback in the far eastern Pacific. Biases in the cloud response to dynamical changes dominate the modelled α SW biases, though errors in the large-scale circulation response to sea surface temperature (SST) forcing also play a role. Analysis of the cloud radiative forcing in the East Pacific reveals model biases in low cloud amount and optical thickness which may affect α SW. We further show that the negative latent heat flux feedback, α LH, exhibits less diversity than α SW and is primarily driven by variations in the near-surface specific humidity difference. However, biases in both the near-surface wind speed and humidity response to SST forcing can explain the inter-model αLH differences.
Resumo:
Pods play a key role in encapsulating the developing seeds and protecting them from pests and pathogens. In addition to this protective function, it has been shown that the photosynthetically active pod wall contributes assimilates and nutrients to fuel seed growth. Recent work has revealed that signals originating from the pod may also act to coordinate grain filling and regulate the reallocation of reserves from damaged seeds to those that have retained viability. In this review we consider the evidence that pods can regulate seed growth and maturation, particularly in members of the Brassicaceae family, and explore how the timing and duration of pod development might be manipulated to enhance either the quantity of crop yield or its nutritional properties.
Resumo:
Background: Child social anxiety is common, and predicts later emotional and academic impairment. Offspring of socially anxious mothers are at increased risk. It is important to establish whether individual vulnerability to disorder can be identified in young children. Method: The responses of 4.5 year-old children of mothers with social phobia (N = 62) and non-anxious mothers (N = 60) were compared, two months before school entry, using a Doll Play (DP) procedure focused on the social challenge of starting school. DP responses were examined in relation to teacher reports of anxious-depressed symptoms and social worries at the end of the child’s first school term. The role of earlier child behavioral inhibition and attachment, assessed at 14 months, was also considered. Results: Compared to children of non-anxious mothers, children of mothers with social phobia were significantly more likely to give anxiously negative responses in their school DP (OR = 2.57). In turn, negative DP predicted teacher reported anxious-depressed and social worry problems. There were no effects of infant behavioral inhibition or attachment. Conclusion: Vulnerability in young children at risk of anxiety can be identified using Doll Play narratives.
Resumo:
What impact do international state-building missions have on the domestic politics of states they seek to build, and how can we measure this impact with confidence? This article seeks to address these questions and challenge some existing approaches that often appear to assume that state-builders leave lasting legacies rather than demonstrating such influence with the use of carefully chosen empirical evidence. Too often, domestic conditions that follow in the wake of international state-building are assumed to follow as a result of international intervention, usually due to insufficient attention to the causal processes that link international actions to domestic outcomes. The article calls for greater appreciation of the methodological challenges to establishing causal inferences regarding the legacies of state-building and identifies three qualitative methodological strategies—process tracing, counterfactual analysis, and the use of control cases—that can be used to improve confidence in causal claims about state-building legacies. The article concludes with a case study of international state-building in East Timor, highlighting several flaws of existing evaluations of the United Nations' role in East Timor and identifying the critical role that domestic actors play even in the context of authoritative international intervention
Resumo:
Background DNA methylation of promoter-associated CpG islands of certain genes may play a role in the development of colorectal cancer. The MYOD-1 gene which is a muscle differentiation gene has been showed to be significantly methylated in colorectal cancer which, is an age related event. However the role of this gene in the colonic mucosa is not understood and whether methylation occurs in subjects without colon cancer. In this study, we have determined the frequency of methylation of the MYOD-1 gene in normal colonic mucosa and investigated to see if this is associated with established colorectal cancer risk factors primarily ageing. Results We analysed colonic mucosal biopsies in 218 normal individuals and demonstrated that in most individuals promoter hypermethylation was not quantified for MYOD-1. However, promoter hypermethylation increased significantly with age (p < 0.001 using regression analysis) and this was gender independent. We also showed that gene promoter methylation increased positively with an increase in waist to hip (WHR) ratio - the latter is also a known risk factor for colon cancer development. Conclusions Our study suggests that promoter gene hypermethylation of the MYOD-1 gene increases significantly with age in normal individuals and thus may offer potential as a putative biomarker for colorectal cancer.