58 resultados para Project 2001-010-C : Investment Decision Framework for Infrastructure Asset Management
Resumo:
During a series of 8 measurement campaigns within the SPURT project (2001-2003), vertical profiles of CO and O3 have been obtained at subtropical, middle and high latitudes over western Europe, covering the troposphere and lowermost stratosphere up to ~14 km altitude during all seasons. The seasonal and latitudinal variation of the measured trace gas profiles are compared to simulations with the chemical transport model MATCH. In the troposphere reasonable agreement between observations and model predictions is achieved for CO and O3, in particular at subtropical and mid-latitudes, while the model overestimates (underestimates) CO (O3 in the lowermost stratosphere particularly at high latitudes, indicating too strong simulated bi-directional exchange across the tropopause. By the use of tagged tracers in the model, long-range transport of Asian air masses is identified as the dominant source of CO pollution over Europe in the free troposphere.
Resumo:
This chapter presents the range of activities undertaken for the Lefka Ori National Park in Crete, Creece within the frame of INNOVA project which aimed at achieving the following outcomes: -Evaluation of protected area management effectiveness -Introduction to the concept of sustainability in protected area management -Developing of a sustainability monitoring strategy for Lefka Ori -Increase of stakeholder and public awareness, regarding the protected areas threats and values -Enable stakeholder and local community engagement in protected area management
Resumo:
Our digital universe is rapidly expanding,more and more daily activities are digitally recorded, data arrives in streams, it needs to be analyzed in real time and may evolve over time. In the last decade many adaptive learning algorithms and prediction systems, which can automatically update themselves with the new incoming data, have been developed. The majority of those algorithms focus on improving the predictive performance and assume that model update is always desired as soon as possible and as frequently as possible. In this study we consider potential model update as an investment decision, which, as in the financial markets, should be taken only if a certain return on investment is expected. We introduce and motivate a new research problem for data streams ? cost-sensitive adaptation. We propose a reference framework for analyzing adaptation strategies in terms of costs and benefits. Our framework allows to characterize and decompose the costs of model updates, and to asses and interpret the gains in performance due to model adaptation for a given learning algorithm on a given prediction task. Our proof-of-concept experiment demonstrates how the framework can aid in analyzing and managing adaptation decisions in the chemical industry.
Resumo:
The focus of Corporate Governance is shifting from the role of directors to active ownership. Based on their fiduciary duty to other shareholders, it is believed that institutional investors have an important role to play in this regard. However, the Pension Funds and the Sovereign Wealth Organisations are not driven by the same set of objectives. In addition, Environmental Social and Governance (ESG) issues in investment decision-making are now becoming more important and they are capable of becoming the mainstream in the future. However, there are widespread variations in perception of fiduciary responsibilities, ESG issues appraisal, as well as the strategies adopted by institutional investors on shareholder engagement as responsible investors. Responsible Investment market is largely driven by institutional investors and they are expected to continue to lead the way. This research work investigates the role of the main asset owners and their advisors in responsible investment practices in the UK. It adopts a qualitative approach using semi-structured interviews, questionnaire and meetings observations. Gathered data is analysed using grounded theory and the findings highlight the perception of the various investor groups to corporate governance. The research work contributes to the body of knowledge by assessing the corporate governance perspectives of the various classes of institutional investors which may have practical implications for other countries.
Resumo:
Many countries have conservation plans for threatened species, but such plans have generally been developed without taking into account the potential impacts of climate change. Here, we apply a decision framework, specifically developed to identify and prioritise climate change adaptation actions and demonstrate its use for 30 species threatened in the UK. Our aim is to assess whether government conservation recommendations remain appropriate under a changing climate. The species, associated with three different habitats (lowland heath, broadleaved woodland and calcareous grassland), were selected from a range of taxonomic groups (primarily moths and vascular plants, but also including bees, bryophytes, carabid beetles and spiders). We compare the actions identified for these threatened species by the decision framework with those included in existing conservation plans, as developed by the UK Government's statutory adviser on nature conservation. We find that many existing conservation recommendations are also identified by the decision framework. However, there are large differences in the spatial prioritisation of actions when explicitly considering projected climate change impacts. This includes recommendations for actions to be carried out in areas where species do not currently occur, in order to allow them to track movement of suitable conditions for their survival. Uncertainties in climate change projections are not a reason to ignore them. Our results suggest that existing conservation plans, which do not take into account potential changes in suitable climatic conditions for species, may fail to maximise species persistence. Comparisons across species also suggest a more habitat-focused approach could be adopted to enable climate change adaptation for multiple species.
Resumo:
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.
Resumo:
Purpose - The purpose of this paper is to provide a quantitative multicriteria decision-making approach to knowledge management in construction entrepreneurship education by means of an analytic knowledge network process (KANP) Design/methodology/approach- The KANP approach in the study integrates a standard industrial classification with the analytic network process (ANP). For the construction entrepreneurship education, a decision-making model named KANP.CEEM is built to apply the KANP method in the evaluation of teaching cases to facilitate the case method, which is widely adopted in entrepreneurship education at business schools. Findings- The study finds that there are eight clusters and 178 nodes in the KANP.CEEM model, and experimental research on the evaluation of teaching cases discloses that the KANP method is effective in conducting knowledge management to the entrepreneurship education. Research limitations/implications- As an experimental research, this paper ignores the concordance between a selected standard classification and others, which perhaps limits the usefulness of KANP.CEEM model elsewhere. Practical implications- As the KANP.CEEM model is built based on the standard classification codes and the embedded ANP, it is thus expected that the model has a wide potential in evaluating knowledge-based teaching materials for any education purpose with a background from the construction industry, and can be used by both faculty and students. Originality/value- This paper fulfils a knowledge management need and offers a practical tool for an academic starting out on the development of knowledge-based teaching cases and other teaching materials or for a student going through the case studies and other learning materials.
Resumo:
A major infrastructure project is used to investigate the role of digital objects in the coordination of engineering design work. From a practice-based perspective, research emphasizes objects as important in enabling cooperative knowledge work and knowledge sharing. The term ‘boundary object’ has become used in the analysis of mutual and reciprocal knowledge sharing around physical and digital objects. The aim is to extend this work by analysing the introduction of an extranet into the public–private partnership project used to construct a new motorway. Multiple categories of digital objects are mobilized in coordination across heterogeneous, cross-organizational groups. The main findings are that digital objects provide mechanisms for accountability and control, as well as for mutual and reciprocal knowledge sharing; and that different types of objects are nested, forming a digital infrastructure for project delivery. Reconceptualizing boundary objects as a digital infrastructure for delivery has practical implications for management practices on large projects and for the use of digital tools, such as building information models, in construction. It provides a starting point for future research into the changing nature of digitally enabled coordination in project-based work.