42 resultados para Professional Life Cycle of the Teacher
Resumo:
This paper reviews the meteorology of the Western Indian Ocean and uses a state–of–the–art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44–year re–analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter–annual variability are described, associated with El Niño and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re–analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea–surface temperatures.
Resumo:
Tetracapsuloides bryosalmonae is the myxozoan parasite causing proliferative kidney disease (PKD) of salmonid fishes in Europe and North America. The complete life cycle of the parasite remains unknown despite recent discoveries that the stages infectious for fish develop in freshwater bryozoans. During the course of examinations of the urine of rainbow trout (Oncorhynchus mykiss) with or recovering from PKD we identified spores with features similar to those of T. bryosalmonae found in the bryozoan host. Spores found in the urine were subspherical, with a width of 16 mum and height of 14 mum, and possessed two soft valves surrounding two spherical polar capsules (2 mum in diameter) and a single sporoplasm. The absence of hardened valves is a distinguishing characteristic of the newly established class Malacosporea that includes T. bryosalmonae as found in the bryozoan host. The parasite in the urine of rainbow trout possessed only two polar capsules and two valve cells compared to the four polar capsules and four valves observed in the spherical spores of 19 mum in diameter from T. bryosalmonae from the bryozoan host. Despite morphological differences, a relationship between the spores in the urine of rainbow trout and T. bryosalmonae was demonstrated by binding of monoclonal and polyclonal antibodies and DNA probes specific to T. bryosalmonae.
Resumo:
The author starts from a historical viewpoint to suggest that, at primary level, we have tended to perpetuate a nineteenth-century notion of music education. This is evident in the selection and organisation of musical content in curriculum documents, the scope of the teacher-pupil transaction implicit in these and the assumptions about music education which underpin research on practice conducted at official policy level. In light of the introduction of the 1999 Revised Primary School Curriculum, with its change in emphasis, she notes that it is timely to reconsider the situation. Central to this is the need to challenge the notion of music as a set of delineated skills, to explore the relationship between the primary teacher and music, and to move towards a notion of research which acknowledges the richness of multiple interpretations teachers bring to the curriculum.
Resumo:
The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.
Resumo:
The variations with the seasonal cycle of the atmospheric response to constant SST anomalies in the eastern tropical Pacific are investigated with the atmospheric GCM, HadAM3. The equatorial wind response is weakest in January and February when the warmest SSTs are south of the Equator and strongest in April when the warmest SSTs are on the Equator. This may have consequences for the seasonality of the onset and termination of El Niño. Westerly wind anomalies in the tropical Pacific associated with El Niño have previously been observed to shift south of the Equator, weakening on the Equator, during the northern winter. It has been suggested that this may contribute to the termination of El Niño in spring. These experiments demonstrate that such a shift can arise solely in response to the mean seasonal cycle during El Niño and does not require changes in SST anomalies.
Resumo:
Patches of ionization are common in the polar ionosphere where their motion and associated density gradients give variable disturbances to High Frequency (HF) radio communications, over-the-horizon radar location errors, and disruption and errors to satellite navigation and communication. Their formation and evolution are poorly understood, particularly under disturbed space weather conditions. We report direct observations of the full evolution of patches during a geomagnetic storm, including formation, polar cap entry, transpolar evolution, polar cap exit, and sunward return flow. Our observations show that modulation of nightside reconnection in the substorm cycle of the magnetosphere helps form the gaps between patches where steady convection would give a “tongue” of ionization (TOI).
Resumo:
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Resumo:
On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR) and approached the post-noon dayside magnetopause over Greenland between 13:00 and 14:00 UT During that interval, a sudden reorganisation of the high-latitude dayside convection pattern accurred after 13:20 UT most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Sondre Stromfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.
Resumo:
A Hale cycle, one complete magnetic cycle of the Sun, spans two complete Schwabe cycles (also referred to as sunspot and, more generally, solar cycles). The approximately 22-year Hale cycle is seen in magnetic polarities of both sunspots and polar fields, as well as in the intensity of galactic cosmic rays reaching Earth, with odd- and even-numbered solar cycles displaying qualitatively different waveforms. Correct numbering of solar cycles also underpins empirical cycle-to-cycle relations which are used as first-order tests of stellar dynamo models. There has been much debate about whether the unusually long solar cycle 4 (SC4), spanning- 1784–1799, was actually two shorter solar cycles combined as a result of poor data coverage in the original Wolf sunspot number record. Indeed, the group sunspot number does show a small increase around 1794–1799 and there is evidence of an increase in the mean latitude of sunspots at this time, suggesting the existence of a cycle ‘‘4b’’. In this study, we use cosmogenic radionuclide data and associated reconstructions of the heliospheric magnetic field (HMF) to show that the Hale cycle has persisted over the last 300 years and that data prior to 1800 are more consistent with cycle 4 being a single long cycle (the ‘‘no SC4b’’ scenario). We also investigate the effect of cycle 4b on the HMF using an open solar flux (OSF) continuity model, in which the OSF source term is related to sunspot number and the OSF loss term is determined by the heliospheric current sheet tilt, assumed to be a simple function of solar cycle phase. The results are surprising; Without SC4b, the HMF shows two distinct peaks in the 1784–1799 interval, while the addition of SC4b removes the secondary peak, as the OSF loss term acts in opposition to the later rise in sunspot number. The timing and magnitude of the main SC4 HMF peak is also significantly changed by the addition of SC4b. These results are compared with the cosmogenic isotope reconstructions of HMF and historical aurora records. These data marginally favour the existence of SC4b (the ‘‘SC4b’’ scenario), though the result is less certain than that based on the persistence of the Hale cycle. Thus while the current uncertainties in the observations preclude any definitive conclusions, the data favour the ‘‘no SC4b’’ scenario. Future improvements to cosmogenic isotope reconstructions of the HMF, through either improved modelling or additional ice cores from well-separated geographic locations, may enable questions of the existence of SC4b and the phase of Hale cycle prior to the Maunder minimum to be settled conclusively.
Resumo:
The role of the local atmospheric forcing on the ocean mixed layer depth (MLD) over the global oceans is studied using ocean reanalysis data products and a single-column ocean model coupled to an atmospheric general circulation model. The focus of this study is on how the annual mean and the seasonal cycle of the MLD relate to various forcing characteristics in different parts of the world's ocean, and how anomalous variations in the monthly mean MLD relate to anomalous atmospheric forcings. By analysing both ocean reanalysis data and the single-column ocean model, regions with different dominant forcings and different mean and variability characteristics of the MLD can be identified. Many of the global oceans' MLD characteristics appear to be directly linked to different atmospheric forcing characteristics at different locations. Here, heating and wind-stress are identified as the main drivers; in some, mostly coastal, regions the atmospheric salinity forcing also contributes. The annual mean MLD is more closely related to the annual mean wind-stress and the MLD seasonality is more closely to the seasonality in heating. The single-column ocean model, however, also points out that the MLD characteristics over most global ocean regions, and in particular the tropics and subtropics, cannot be maintained by local atmospheric forcings only, but are also a result of ocean dynamics that are not simulated in a single-column ocean model. Thus, lateral ocean dynamics are essentially in correctly simulating observed MLD.
Resumo:
The rapid expansion of the TMT sector in the late 1990s and more recent growing regulatory and corporate focus on business continuity and security have raised the profile of data centres. Data centres offer a unique blend of occupational, physical and technological characteristics compared to conventional real estate assets. Limited trading and heterogeneity of data centres also causes higher levels of appraisal uncertainty. In practice, the application of conventional discounted cash flow approaches requires information about a wide range of inputs that is difficult to derive from limited market signals or estimate analytically. This paper outlines an approach that uses pricing signals from similar traded cash flows is proposed. Based upon ‘the law of one price’, the method draws upon the premise that two identical future cash flows must have the same value now. Given the difficulties of estimating exit values, an alternative is that the expected cash flows of data centre are analysed over the life cycle of the building, with corporate bond yields used to provide a proxy for the appropriate discount rates for lease income. Since liabilities are quite diverse, a number of proxies are suggested as discount and capitalisation rates including indexed-linked, fixed interest and zero-coupon bonds. Although there are rarely assets that have identical cash flows and some approximation is necessary, the level of appraiser subjectivity is dramatically reduced.
Resumo:
Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E.fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg(-1)), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13, 100 mg Ph kg(-1), 2970-53,400 mg Zn kg(-1)). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Life-Cycle Assessment (LCA) was used to assess the potential environmental and human health impacts of growing genetically-modified (GM), herbicide-tolerant sugar beet in the UK and Germany compared with conventional sugar beet varieties. The GM variety results in lower potential environmental impacts on global warming, airborne nutrification, ecotoxicity (of soil and water) and watercourse enrichment, and lower potential human health impacts in terms of production of toxic particulates, summer smog, carcinogens and ozone depletion. Although the overall contribution of GM sugar beet to reducing harmful emissions to the environment would be relatively small, the potential for GM crops to reduce pollution from agriculture, including diffuse water pollution, is highlighted.
Resumo:
The paper presents the methods and results of a life-cycle assessment (LCA) applied to the production of maize grain from a conventional variety compared with maize grain from a variety genetically modified to be herbicide tolerant and insect protected and to contain an enhanced oil and lysine content, and its impact when fed to broiler chickens. The findings show that there are both environmental and human health benefits of growing GM maize including lower impacts on global warming, ozone depletion, freshwater ecotoxicity and human toxicity. However, when considered in terms of the use of maize as a feed input to broiler chicken production, the benefits of the GM alternative become negligible compared to the use of conventional maize.