35 resultados para Principle Component Analysis (PCA)
Resumo:
The identification and visualization of clusters formed by motor unit action potentials (MUAPs) is an essential step in investigations seeking to explain the control of the neuromuscular system. This work introduces the generative topographic mapping (GTM), a novel machine learning tool, for clustering of MUAPs, and also it extends the GTM technique to provide a way of visualizing MUAPs. The performance of GTM was compared to that of three other clustering methods: the self-organizing map (SOM), a Gaussian mixture model (GMM), and the neural-gas network (NGN). The results, based on the study of experimental MUAPs, showed that the rate of success of both GTM and SOM outperformed that of GMM and NGN, and also that GTM may in practice be used as a principled alternative to the SOM in the study of MUAPs. A visualization tool, which we called GTM grid, was devised for visualization of MUAPs lying in a high-dimensional space. The visualization provided by the GTM grid was compared to that obtained from principal component analysis (PCA). (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Deep Brain Stimulation (DBS) has been successfully used throughout the world for the treatment of Parkinson's disease symptoms. To control abnormal spontaneous electrical activity in target brain areas DBS utilizes a continuous stimulation signal. This continuous power draw means that its implanted battery power source needs to be replaced every 18–24 months. To prolong the life span of the battery, a technique to accurately recognize and predict the onset of the Parkinson's disease tremors in human subjects and thus implement an on-demand stimulator is discussed here. The approach is to use a radial basis function neural network (RBFNN) based on particle swarm optimization (PSO) and principal component analysis (PCA) with Local Field Potential (LFP) data recorded via the stimulation electrodes to predict activity related to tremor onset. To test this approach, LFPs from the subthalamic nucleus (STN) obtained through deep brain electrodes implanted in a Parkinson patient are used to train the network. To validate the network's performance, electromyographic (EMG) signals from the patient's forearm are recorded in parallel with the LFPs to accurately determine occurrences of tremor, and these are compared to the performance of the network. It has been found that detection accuracies of up to 89% are possible. Performance comparisons have also been made between a conventional RBFNN and an RBFNN based on PSO which show a marginal decrease in performance but with notable reduction in computational overhead.
Resumo:
This paper presents recent developments to a vision-based traffic surveillance system which relies extensively on the use of geometrical and scene context. Firstly, a highly parametrised 3-D model is reported, able to adopt the shape of a wide variety of different classes of vehicle (e.g. cars, vans, buses etc.), and its subsequent specialisation to a generic car class which accounts for commonly encountered types of car (including saloon, batchback and estate cars). Sample data collected from video images, by means of an interactive tool, have been subjected to principal component analysis (PCA) to define a deformable model having 6 degrees of freedom. Secondly, a new pose refinement technique using “active” models is described, able to recover both the pose of a rigid object, and the structure of a deformable model; an assessment of its performance is examined in comparison with previously reported “passive” model-based techniques in the context of traffic surveillance. The new method is more stable, and requires fewer iterations, especially when the number of free parameters increases, but shows somewhat poorer convergence. Typical applications for this work include robot surveillance and navigation tasks.
Resumo:
Changes in climate variability and, in particular, changes in extreme climate events are likely to be of far more significance for environmentally vulnerable regions than changes in the mean state. It is generally accepted that sea-surface temperatures (SSTs) play an important role in modulating rainfall variability. Consequently, SSTs can be prescribed in global and regional climate modelling in order to study the physical mechanisms behind rainfall and its extremes. Using a satellite-based daily rainfall historical data set, this paper describes the main patterns of rainfall variability over southern Africa, identifies the dates when extreme rainfall occurs within these patterns, and shows the effect of resolution in trying to identify the location and intensity of SST anomalies associated with these extremes in the Atlantic and southwest Indian Ocean. Derived from a Principal Component Analysis (PCA), the results also suggest that, for the spatial pattern accounting for the highest amount of variability, extremes extracted at a higher spatial resolution do give a clearer indication regarding the location and intensity of anomalous SST regions. As the amount of variability explained by each spatial pattern defined by the PCA decreases, it would appear that extremes extracted at a lower resolution give a clearer indication of anomalous SST regions.
Resumo:
The coarse spacing of automatic rain gauges complicates near-real- time spatial analyses of precipitation. We test the possibility of improving such analyses by considering, in addition to the in situ measurements, the spatial covariance structure inferred from past observations with a denser network. To this end, a statistical reconstruction technique, reduced space optimal interpolation (RSOI), is applied over Switzerland, a region of complex topography. RSOI consists of two main parts. First, principal component analysis (PCA) is applied to obtain a reduced space representation of gridded high- resolution precipitation fields available for a multiyear calibration period in the past. Second, sparse real-time rain gauge observations are used to estimate the principal component scores and to reconstruct the precipitation field. In this way, climatological information at higher resolution than the near-real-time measurements is incorporated into the spatial analysis. PCA is found to efficiently reduce the dimensionality of the calibration fields, and RSOI is successful despite the difficulties associated with the statistical distribution of daily precipitation (skewness, dry days). Examples and a systematic evaluation show substantial added value over a simple interpolation technique that uses near-real-time observations only. The benefit is particularly strong for larger- scale precipitation and prominent topographic effects. Small-scale precipitation features are reconstructed at a skill comparable to that of the simple technique. Stratifying the reconstruction method by the types of weather type classifications yields little added skill. Apart from application in near real time, RSOI may also be valuable for enhancing instrumental precipitation analyses for the historic past when direct observations were sparse.
Resumo:
This report presents the canonical Hamiltonian formulation of relative satellite motion. The unperturbed Hamiltonian model is shown to be equivalent to the well known Hill-Clohessy-Wilshire (HCW) linear formulation. The in°uence of perturbations of the nonlinear Gravitational potential and the oblateness of the Earth; J2 perturbations are also modelled within the Hamiltonian formulation. The modelling incorporates eccentricity of the reference orbit. The corresponding Hamiltonian vector ¯elds are computed and implemented in Simulink. A numerical method is presented aimed at locating periodic or quasi-periodic relative satellite motion. The numerical method outlined in this paper is applied to the Hamiltonian system. Although the orbits considered here are weakly unstable at best, in the case of eccentricity only, the method ¯nds exact periodic orbits. When other perturbations such as nonlinear gravitational terms are added, drift is signicantly reduced and in the case of the J2 perturbation with and without the nonlinear gravitational potential term, bounded quasi-periodic solutions are found. Advantages of using Newton's method to search for periodic or quasi-periodic relative satellite motion include simplicity of implementation, repeatability of solutions due to its non-random nature, and fast convergence. Given that the use of bounded or drifting trajectories as control references carries practical di±culties over long-term missions, Principal Component Analysis (PCA) is applied to the quasi-periodic or slowly drifting trajectories to help provide a closed reference trajectory for the implementation of closed loop control. In order to evaluate the e®ect of the quality of the model used to generate the periodic reference trajectory, a study involving closed loop control of a simulated master/follower formation was performed. 2 The results of the closed loop control study indicate that the quality of the model employed for generating the reference trajectory used for control purposes has an important in°uence on the resulting amount of fuel required to track the reference trajectory. The model used to generate LQR controller gains also has an e®ect on the e±ciency of the controller.
Resumo:
The interpretation of Neotropical fossil phytolith assemblages for palaeoenvironmental and archaeological reconstructions relies on the development of appropriate modern analogues. We analyzed modern phytolith assemblages from the soils of ten distinctive tropical vegetation communities in eastern lowland Bolivia, ranging from terra firme humid evergreen forest to seasonally-inundated savannah. Results show that broad ecosystems – evergreen tropical forest, semi-deciduous dry tropical forest, and savannah – can be clearly differentiated by examination of their phytolith spectra and the application of Principal Component Analysis (PCA). Differences in phytolith assemblages between particular vegetation communities within each of these ecosystems are more subtle, but can still be identified. Comparison of phytolith assemblages with pollen rain data and stable carbon isotope analyses from the same vegetation plots show that these proxies are not only complementary, but significantly improve taxonomic and ecosystem resolution, and therefore our ability to interpret palaeoenvironmental and archaeological records. Our data underline the utility of phytolith analyses for reconstructing Amazon Holocene vegetation histories and pre-Columbian land use, particularly the high spatial resolution possible with terrestrial soil-based phytolith studies.
Resumo:
Background: Jargon aphasia is one of the most intractable forms of aphasia with limited recommendation on amelioration of associated naming difficulties and neologisms. The few naming therapy studies that exist in jargon aphasia have utilized either semantic or phonological approaches but the results have been equivocal. Moreover, the effect of therapy on characteristics of neologisms is less explored. Aims: This study investigates the effectiveness of a phonological naming therapy (i.e., phonological component analysis, PCA) on picture naming abilities and on quantitative and qualitative changes in neologisms for an individual with jargon aphasia (FF). Methods: FF showed evidence of jargon aphasia with severe naming difficulties and produced a very high proportion of neologisms. A single-subject multiple probe design across behaviors was employed to evaluate the effects of PCA therapy on the accuracy for three sets of words. In therapy, a phonological components analysis chart was used to identify five phonological components (i.e., rhymes, first sound, first sound associate, final sound, number of syllables) for each target word. Generalization effects—change in percent accuracy and error pattern—were examined comparing pre-and post-therapy responses on the Philadelphia Naming Test and these responses were analyzed to explore the characteristics of the neologisms. The quantitative change in neologisms was measured by change in the proportion of neologisms from pre- to post-therapy and the qualitative change was indexed by the phonological overlap between target and neologism. Results: As a consequence of PCA therapy, FF showed a significant improvement in his ability to name the treated items. His performance in maintenance and follow-up phases remained comparable to his performance during the therapy phases. Generalization to other naming tasks did not show a change in accuracy but distinct differences in error pattern (an increase in proportion of real word responses and a decrease in proportion of neologisms) were observed. Notably, the decrease in neologisms occurred with a corresponding trend for increase in the phonological similarity between the neologisms and the targets. Conclusions: This study demonstrated the effectiveness of a phonological therapy for improving naming abilities and reducing the amount of neologisms in an individual with severe jargon aphasia. The positive outcome of this research is encouraging, as it provides evidence for effective therapies for jargon aphasia and also emphasizes that use of the quality and quantity of errors may provide a sensitive outcome measure to determine therapy effectiveness, in particular for client groups who are difficult to treat.
Resumo:
Sainfoin is a non-bloating temperate forage legume with a moderate-to-high condensed tannin (CT) content. This study investigated whether the diversity of sainfoin accessions in terms of CT structures and contents could be related to rumen in vitro gas and methane (CH4) production and fermentation characteristics. The aim was to identify promising accessions for future investigations. Accessions differed (P < 0·0001) in terms of total gas and CH4 productions. Fermentation kinetics (i.e. parameters describing the shape of the gas production curve and half-time gas production) for CH4 production were influenced by accession (P ≤ 0·038), but not by PEG. Accession, PEG and time affected (P < 0·001) CH4 production, but accession and PEG interaction showed only a tendency (P = 0·08). Increase in CH4 due to PEG addition was not related to CT content. Further analysis of the relationships among multiple traits (nutritional composition, CT structure and CH4 production) using principal component analysis (PCA) based on optimally weighted variables revealed differences among accessions. The first two principal component axes, PC1 (57·6%) and PC2 (18·4%), explained 76·0% of the total variation among accessions. Loading of biplots derived from both PCAs made it possible to establish a relationship between the ratio of prodelphinidin:procyanidin (PD:PC) tannins and CH4 production in some accessions. The PD:PC ratio seems to be an important source of variation that is negatively related to CH4 production. These results suggested that sainfoin accessions collected from across the world exhibited substantial variation in terms of their effects on rumen in vitro CH4 production, revealing some promising accessions for future investigations.
Resumo:
The aim of the present study was to elucidate the impact of polydextrose PDX an soluble fiber, on the human fecal metabolome by high-resolution nuclear magnetic resonance (NMR) spectroscopy-based metabolomics in a dietary intervention study (n = 12). Principal component analysis (PCA) revealed a strong effect of PDX consumption on the fecal metabolome, which could be mainly ascribed to the presence of undigested fiber and oligosaccharides formed from partial degradation of PDX. Our results demonstrate that NMR-based metabolomics is a useful technique for metabolite profiling of feces and for testing compliance to dietary fiber intake in such trials. In addition, novel associations between PDX and the levels of the fecal metabolites acetate and propionate could be identified. The establishment of a correlation between the fecal metabolome and levels of Bifidobacterium (R2 = 0.66) and Bacteroides (R2 = 0.46) demonstrates the potential of NMR-based metabolomics to elucidate metabolic activity of bacteria in the gut.
Resumo:
This workshop paper reports recent developments to a vision system for traffic interpretation which relies extensively on the use of geometrical and scene context. Firstly, a new approach to pose refinement is reported, based on forces derived from prominent image derivatives found close to an initial hypothesis. Secondly, a parameterised vehicle model is reported, able to represent different vehicle classes. This general vehicle model has been fitted to sample data, and subjected to a Principal Component Analysis to create a deformable model of common car types having 6 parameters. We show that the new pose recovery technique is also able to operate on the PCA model, to allow the structure of an initial vehicle hypothesis to be adapted to fit the prevailing context. We report initial experiments with the model, which demonstrate significant improvements to pose recovery.
Resumo:
Locality to other nodes on a peer-to-peer overlay network can be established by means of a set of landmarks shared among the participating nodes. Each node independently collects a set of latency measures to landmark nodes, which are used as a multi-dimensional feature vector. Each peer node uses the feature vector to generate a unique scalar index which is correlated to its topological locality. A popular dimensionality reduction technique is the space filling Hilbert’s curve, as it possesses good locality preserving properties. However, there exists little comparison between Hilbert’s curve and other techniques for dimensionality reduction. This work carries out a quantitative analysis of their properties. Linear and non-linear techniques for scaling the landmark vectors to a single dimension are investigated. Hilbert’s curve, Sammon’s mapping and Principal Component Analysis have been used to generate a 1d space with locality preserving properties. This work provides empirical evidence to support the use of Hilbert’s curve in the context of locality preservation when generating peer identifiers by means of landmark vector analysis. A comparative analysis is carried out with an artificial 2d network model and with a realistic network topology model with a typical power-law distribution of node connectivity in the Internet. Nearest neighbour analysis confirms Hilbert’s curve to be very effective in both artificial and realistic network topologies. Nevertheless, the results in the realistic network model show that there is scope for improvements and better techniques to preserve locality information are required.
Resumo:
This study clarifies the taxonomic status of Anemone coronaria and segregates the species and A. coronaria infraspecific variants using morphological and morphometric analyses. Principal component analysis of the coronaria group was performed on 25 quantitative and qualitative characters, and morphometric analysis of the A. coronaria infraspecific variants was performed on 21 quantitative and qualitative characters. The results showed that the A. coronaria group clustered into four major groups: A. coronaria L., A. biflora DC, A. bucharica (Regel) Juz.ex Komarov, and a final group including A. eranthioides Regel and A. tschernjaewii Regel. The data on the A. coronaria infraspecific variants clustered into six groups: A. coronaria L. var. coronaria L., var. cyanea Ard., var. albiflora Rouy & Fouc., var. parviflora Regel, var. ventreana Ard., and var. rissoana Ard. © 2007 The Linnean Society of London
Resumo:
Baking and 2-g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2-g direct-drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW-GS] composition by SDS-PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R-2 values of 0.862-0.866. In particular, three new spring wheat strains (CHD 502a-c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10-min bandwidth.
Resumo:
When the orthogonal space-time block code (STBC), or the Alamouti code, is applied on a multiple-input multiple-output (MIMO) communications system, the optimum reception can be achieved by a simple signal decoupling at the receiver. The performance, however, deteriorates significantly in presence of co-channel interference (CCI) from other users. In this paper, such CCI problem is overcome by applying the independent component analysis (ICA), a blind source separation algorithm. This is based on the fact that, if the transmission data from every transmit antenna are mutually independent, they can be effectively separated at the receiver with the principle of the blind source separation. Then equivalently, the CCI is suppressed. Although they are not required by the ICA algorithm itself, a small number of training data are necessary to eliminate the phase and order ambiguities at the ICA outputs, leading to a semi-blind approach. Numerical simulation is also shown to verify the proposed ICA approach in the multiuser MIMO system.