24 resultados para Powders: solid state reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation. (C) 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase separation behaviour in aqueous mixtures of poly(methyl vinyl ether) and hydroxypropylcellulose has been studied by cloud points method and viscometric measurements. The miscibility of these blends in solid state has been assessed by infrared spectroscopy; methanol vapours sorption experiments and scanning electron microscopy. The values of Gibbs energy of mixing of the polymers and their blends with methanol as well as between each other were calculated. It was found that in solid state the polymers can interact with methanol very well but the polymer-polymer interactions are unfavourable. Although in aqueous solutions the polymers exhibit some intermolecular interactions their solid blends are not completely miscible. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel wide-band noise source for millimetre-wave spectrometry is described. It uses power combined Schottky diodes, reverse biased to avalanche breakdown, mounted in a wide-band tapered slot antenna. Power has been produced from 15 to 200 GHz with an equivalent temperature of 28200 K at 40 GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three Cu(II)-azido complexes of formula [Cu2L2(N-3)(2)] (1), [Cu2L2(N-3)(2)]center dot H2O (2) and [CuL(N-3)](n) (3) have been synthesized using the same tridentate Schiff base ligand HL (2-[(3-methylaminopropylimino)-methyl]-phenol), the condensation product of N-methyl-1,3-propanediamine and salicyldehyde). Compounds 1 and 2 are basal-apical mu-1,1 double azido bridged dimers. The dimeric structure of 1 is centro-symmetric but that of 2 is non-centrommetric. Compound 3 is a mu-1,1 single azido bridged 1D chain. The three complexes interconvert in solution and can be obtained in pure form by carefully controlling the synthetic conditions. Compound 2 undergoes an irreversible transformation to 1 upon dehydration in the solid state. The magnetic properties of compounds 1 and 2 show the presence of weak antiferromagnetic exchange interactions mediated by the double 1,1-N-3 azido bridges (J = -2.59(4) and -0.10(1) cm-(1), respectively). The single 1,1-N-3 bridge in compound 3 mediates a negligible exchange interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly of proteins and peptides into b-sheet-rich amyloid fibers is a process that has gained notoriety because of its association with human diseases and disorders. Spontaneous self-assembly of peptides into nonfibrillar supramolecular structures can also provide a versatile and convenient mechanism for the bottom-up design of biocompatible materials with functional properties favoring a wide range of practical applications.[1] One subset of these fascinating and potentially useful nanoscale constructions are the peptide nanotubes, elongated cylindrical structures with a hollow center bounded by a thin wall of peptide molecules.[2] A formidable challenge in optimizing and harnessing the properties of nanotube assemblies is to gain atomistic insight into their architecture, and to elucidate precisely how the tubular morphology is constructed from the peptide building blocks. Some of these fine details have been elucidated recently with the use of magic-angle-spinning (MAS) solidstate NMR (SSNMR) spectroscopy.[3] MAS SSNMR measurements of chemical shifts and through-space interatomic distances provide constraints on peptide conformation (e.g., b-strands and turns) and quaternary packing. We describe here a new application of a straightforward SSNMR technique which, when combined with FTIR spectroscopy, reports quantitatively on the orientation of the peptide molecules within the nanotube structure, thereby providing an additional structural constraint not accessible to MAS SSNMR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organo-copper(I) halide complexes with a Cu4I4 cubane core and cyclic amines as ligands have been synthesized and their crystal structures have been defined. Their solid state photophysical properties have been measured and correlated with the crystal structure and packing. A unique and remarkably high luminescence quantum yield (76%) has been measured for one of the complexes having the cubane clusters arranged in a columnar structure and held together by N–HI hydrogen bonds. This high luminescence quantum yield is correlated with a slow radiationless deactivation rate of the excited state and suggests a rather strong enhancement of the cubane core rigidity bestowed by the hydrogen bond pattern. Some preliminary thin film deposition experiments show that these compounds could be considered to be good candidates for applications in electroluminescent devices because of their bright luminescence, low cost and relatively easy synthesis processes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi2O2Te was synthesised from a stoichiometric mixture of Bi, Bi2O3 and Te by a solid state reaction. Analysis of powder X-ray diffraction data indicates that this material crystallises in the anti-ThCr2Si2 structure type (space group I4/mmm), with lattice parameters a = 3.98025(4) and c = 12.70391(16) Å. The electrical and thermal transport properties of Bi2O2Te were investigated as a function of temperature over the temperature range 300 ≤ T/K ≤ 665. These measurements indicate that Bi2O2Te is an n-type semiconductor, with a band gap of 0.23 eV. The thermal conductivity of Bi2O2Te is remarkably low for a crystalline material, with a value of only 0.91 W m-1 K-1 at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The skutterudites YbxFe2Ni2Sb12 (0≤x≤0.4) have been prepared by solid-state reaction and characterised by powder X-ray diffraction. The compounds crystallise in the cubic space group Im View the MathML source3¯ (a≈9.1 Å) with Yb atoms partially filling the voids in the skutterudite framework. A neutron time-of-flight diffraction experiment for Fe2Ni2Sb12 confirms the disorder of Fe and Ni atoms on the transition-metal site. Electrical resistivity, Seebeck coefficient and thermal conductivity measurements indicate that the thermoelectric performance of the skutterudites shows a marked dependence on the Yb content. Magnetic measurements over the temperature range 2≤T/K≤300 show paramagnetic behaviour for all compounds. Decomposition studies under an oxidising atmosphere at elevated temperatures have also been carried out by thermogravimetric analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactions in (molecular) organic crystalline solids have been shown to be important for exerting control that is unattainable over chemical transformations in solution. Such control has also been achieved for reactions within metal– organic cages. In these examples, the reactants are already in place within the crystals following the original crystal growth. The post-synthetic modification of metal–organic frameworks (MOFs and indeed reactions and catalysis within MOFs have been recently demonstrated; in these cases the reactants enter the crystals through permanent channels. Another growing area of interest within molecular solid-state chemistry is synthesis by mechanical co-grinding of solid reactants—often referred to as mechanochemistry. Finally, in a small number of reported examples, molecules also have been shown to enter nonporous crystals directly from the gas or vapor phase, but in only a few of these examples does a change in covalent bonding result, which indicates that a reaction occurs within the nonporous crystals. It is this latter type of highly uncommon reaction that is the focus of the present study.