47 resultados para Potency
Resumo:
Soy isoflavones are thought to have a cardioprotective effect that is partly mediated by an inhibitory influence on the oxidation of low density lipoprotein (LDL). However, the aglycone forms investigated in many previous studies do not circulate in appreciable quantities because they are metabolised in the gut and liver. We investigated effects of various isoflavone metabolites, including for the first time the sulphated conjugates formed in the liver and the mucosa of the small intestine, on copper-induced LDL oxidation. The parent aglycones inhibited oxidation, although only 5% as well as quercetin. Metabolism increased or decreased their effectiveness. Equol inhibited 2.65-fold better than its parent compound daidzein and 8-hydroxydaidzein, not previously assessed, was 12.5-fold better than daidzein. However, monosulphated conjugates of genistein, daidzein and equol were much less effective and disulphates completely ineffective. Since almost all isoflavones circulate as conjugates, these data suggest that despite the increased potency produced by some metabolic changes, isoflavones may not be effective antioxidants in vivo unless they are deconjugated again.
Resumo:
It is recognised that cholera toxin (Ctx) is a significant cause of gastrointestinal disease globally, particularly in developing countries where access to uncontaminated drinking water is at a premium. Ctx vaccines are prohibitively expensive and only give short-term protection. Consequently, there is scope for the development of alternative control strategies or prophylactics. This may include the use of oligosaccharides as functional mimics for the cell-surface toxin receptor (GM I). Furthermore, the sialic acid component of epithelial receptors has already been shown to contribute significantly to the adhesion and pathogenesis of Ctx. Here, we demonstrate the total inhibition of Ctx using GM1-competitive ELISA with 25 mg mL(-1) of a commercial preparation of sialyloligosaccharides (SOS). The IC50 value was calculated as 5.21 mg mL(-1). One-hundred percent inhibition was also observed at all concentrations of Ctx-HRP tested with 500 ng mL(-1) GM1-OS. Whilst SOS has much lower affinity for Ctx than GM1-OS, the commercial preparation is impure containing only 33.6% carbohydrate; however, the biantennary nature of SOS appears to give a significant increase in potency over constituent monosaccahride residues. It is proposed that SOS could be used as a conventional food additive, such as in emulsifiers, stabilisers or sweeteners, and are classified as nondigestible oligosaccharides that pass into the small intestine, which is the site of Ctx pathogenesis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
1. Soy isoflavones have been extensively studied because of their possible health-promoting effects. Genistein and daidzein, the major isoflavone aglycones, have received most attention; however, they undergo extensive metabolism in the gut and liver, which might affect their biological properties. 2. The antioxidant activity, free radical-scavenging properties and selected cellular effects of the isoflavone metabolites equol, 8-hydroxydaidzein, O-desmethylangiolensin, and 1,3,5 trihydroxybenzene were investigated in comparison with their parent aglycones, genistein and daidzein. 3. Electron spin resonance spectroscopy indicated that 8-hydroxydaidzein was the most potent scavenger of hydroxyl and superoxide anion radicals. Isoflavone metabolites also exhibited higher antioxidant activity than parent compounds in standard antioxidant (FRAP and TEAC) assays. However, for the suppression of nitric oxide production by activated macrophages, genistein showed the highest potency, followed by equol and daidzein. 4. The metabolism of isoflavones affects their free radical scavenging and antioxidant properties, and their cellular activity, but the effects are complex.
Resumo:
During studies on the bacteriology of appendicitis in children, we often isolated from inflamed and non-inflamed tissue samples, an unusual bile-resistant pigment-producing strictly anaerobic gram-negative rod. Phenotypically this organism resembles members of Bacteroides fragilis group of species, as it is resistant to bile and exhibits a special-potency-disk pattern (resistance to vancomycin, kanamycin and colistin) typical for the B. fragilis group. However, the production of brown pigment on media containing haemolysed blood and a cellular fatty acid composition dominated by iso-C15:0, suggests that the organism most closely resembles species of the genus Porphyromonas. However, the unidentified organism differs from porphyromonads by being bile-resistant and by not producing butyrate as a metabolic end-product. Comparative 16S ribosomal RNA gene sequencing studies show the unidentified organism represents a distinct sub-line, associated with but distinct from, the miss-classified species Bacteroides putredinis. The clustering of the unidentified bacterium with Bacteroides putredinis was statistically significant, but they displayed >4% sequence divergence with each other. Chromosomal DNA-DNA pairing studies further confirmed the separateness of the unidentified bacterium and Bacteroides putredinis. Based on phenotypic and phylogenetic considerations, it is proposed that Bacteroides putredinis and the unidentified bacterium from human sources be classified in a new genus Alistipes, as Alistipes putredinis comb. nov. and Alistipes finegoldii sp. nov., respectively. The type strain of Alistipes finegoldii is CCUG 46020(T) (= AHN2437(T)).
Resumo:
Purpose of review To summarize recent findings relating to the impact of dietary fat composition on whole body lipid metabolism, and common gene variants on the blood lipid response to dietary fat change. Recent findings In recent years a more comprehensive understanding of the impact of polyunsaturated fat (PUFA) intake on the regulation of transcription factors involved in lipogenesis and fatty acid and lipoprotein metabolism has emerged. The evidence is suggestive of a greater potency of the long chain n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and in particular their oxidative products, relative to n-6 Pi In the area of nutrigenetics a number of common gene variants have been identified which may be important determinants of the blood lipid response to altered dietary fat composition. However, confirmation of associations in independent cohorts, and an understanding of the size effect of individual or combinations of genotypes, is often lacking. Summary Although in the future, genotyping holds the potential as a public health tool to target and personalize dietary advice, nutrigenetics is a relatively new science, and further research is needed to address the existing inconsistencies and knowledge gaps.
Resumo:
G protein-coupled receptor kinases (GRKs) are regulatory enzymes involved in the modulation of seven-transmembrane-helix receptors. In order to develop specific inhibitors for these kinases, we synthesized and investigated peptide inhibitors derived from the sequence of the first intracellular loop of the beta(2)-adrenergic receptor. Introduction of changes in the sequence and truncation of N- and C-terminal amino acids increased the inhibitory potency by a factor of 40. These inhibitors not only inhibited the prototypical GRK2 but also GRK3 and GRK5. In contrast there was no inhibition of protein kinase C and protein kinase A even at the highest concentration tested. The peptide with the sequence AKFERLQTVTNYFITSE inhibited GRK2 with an IC50 of 0.6 mu M, GRK3 with 2.6 mu M and GRK5 with 1.6 mu M. The peptide inhibitors were non-competitive for receptor and ATP. These findings demonstrate that specific peptides can inhibit GRKs in the submicromolar range and suggest that a further decrease in size is possible without losing the inhibitory potency. (c) 2005 Published by Elsevier Inc.
Resumo:
The insecticidal potency of some essential oils suggests that they may find an application in the control of house dust mites, but current in vitro assays for mites do not appear to give consistent results. A simple, novel, mite chamber assay was therefore developed to carry out testing. Different species of insects are susceptible to different essential oil components, so we compared the relative acaricidal and pediculicidal activity of three essential oils: tea tree, lavender and lemon, because the activity of their constituents on lice ranges from highly active to virtually inactive. The most effective essential oil against both lice and mites was tea tree oil; lavender was the second most effective, and lemon oil the least, although it did show activity against mites, unlike lice. The assay proved simple and effective and gave reproducible results. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
1 Mechanisms of inverse agonist action at the D-2(short) dopamine receptor have been examined. 2 Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [H-3]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. 3 Competition of inverse agonists versus [H-3] NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K-i values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K-coupled and K-uncoupled were statistically different for the set of compounds tested ( ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. 4 These observations were supported by simulations of these competition experiments according to the extended ternary complex model. 5 Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [S-35]GTPγ S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. 6 These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism.
Resumo:
We have investigated the signalling properties of the chemokine receptor, CCR5, using several assays for agonism: stimulation of changes in intracellular Ca(2+) or CCR5 internalisation in CHO cells expressing CCR5 or stimulation of [(35)S]GTPgammaS binding in membranes of CHO cells expressing CCR5. Four isoforms of the chemokine CCL3 with different amino termini (CCL3, CCL3(2-70), CCL3(5-70), CCL3L1) were tested in these assays in order to probe structure/activity relationships. Each isoform exhibited agonism. The pattern of agonism (potency, maximal effect) was different in the three assays, although the rank order was the same with CCL3L1 being the most potent and efficacious. The data show that the amino terminus of the chemokine is important for signalling. A proline at position 2 (CCL3L1) provides for high potency and efficacy but the isoform with a serine at position 2 (CCL3(2-70)) is as efficacious in some assays showing that the proline is not the only determinant of high efficacy. We also increased the sensitivity of CCR5 signalling by treating cells with sodium butyrate, thus increasing the receptor/G protein ratio. This allowed the detection of a change in intracellular Ca(2+) after treatment with CCL7 and Met-RANTES showing that these ligands possess measurable but low efficacy. This study therefore shows that sodium butyrate treatment increases the sensitivity of signalling assays and enables the detection of efficacy in ligands previously considered as antagonists. The use of different assay systems, therefore, provides different estimates of efficacy for some ligands at this receptor.
Resumo:
G-protein-coupled receptors are desensitized by a two-step process. In a first step, G-protein-coupled receptor kinases (GRKs) phosphorylate agonist-activated receptors that subsequently bind to a second class of proteins, the arrestins. GRKs can be classified into three subfamilies, which have been implicated in various diseases. The physiological role(s) of GRKs have been difficult to study as selective inhibitors are not available. We have used SELEX (systematic evolution of ligands by exponential enrichment) to develop RNA aptamers that potently and selectively inhibit GRK2. This process has yielded an aptamer, C13, which bound to GRK2 with a high affinity and inhibited GRK2-catalyzed rhodopsin phosphorylation with an IC50 of 4.1 nM. Phosphorylation of rhodopsin catalyzed by GRK5 was also inhibited, albeit with 20-fold lower potency (IC50 of 79 nM). Furthermore, C13 reveals significant specificity, since almost no inhibitory activity was detectable testing it against a panel of 14 other kinases. The aptamer is two orders of magnitude more potent than the best GRK2 inhibitors described previously and shows high selectivity for the GRK family of protein kinases.
Resumo:
The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin- stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca2+ mobilisation. in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1 alpha (D26A) (MIP-1 alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCLS), MIP-1 beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin -stimulated CAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCLS, CCL8 and CCL13 were able to stimulate Ca2+ mobilisation. through CCRS, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca2+ responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca2+ mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca2+ mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCRS. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Antagonists of the chemokine receptor, CCRS, may provide important new drugs for the treatment of HIV-1. In this study we have examined the mechanism of action of two functional antagonists of the chemokine receptor CCRS (UK-396,794, UK-438,235) in signalling and internalisation assays using CHO cells expressing CCR5. Both compounds were potent inverse agonists versus agonist-independent [S-3]GTP gamma S binding to membranes of CHO cells expressing CCR5. Both compounds also acted as allosteric inhibitors of CCL5 (RANTES) and CCL8 (MCP-2) -stimulated [S-35]GTP gamma S binding to CHO-CCR5 membranes, reducing the potency and maximal effects of the two chemokines. The data are consistent with effects of the allosteric inhibitors on both the binding and signalling of the chemokines. Both compounds inhibited CCR5 internalisation triggered by chemokines. When CHO-CCR5 cells were treated with either of the two compounds for prolonged periods of time (24 h) an increase (similar to 15%) in cell surface CCRS was detected. (C) 2007 Elsevier Inc. All rights reserved
Resumo:
PSNCBAM-1 has recently been described as a cannabinoid CB1 receptor allosteric antagonist associated with hypophagic effects in vivo; however, PSNCBAM-1 effects on CB1 ligand-mediated modulation of neuronal excitability remain unknown. Here, we investigate PSNCBAM-1 actions on CB1 receptor-stimulated [35S]GTPγS binding in cerebellar membranes and on CB1 ligand modulation of presynaptic CB1 receptors at inhibitory interneurone-Purkinje cell (IN-PC) synapses in the cerebellum using whole-cell electrophysiology. PSNCBAM-1 caused non-competitive antagonism in [35S]GTPγS binding studies, with higher potency against the CB receptor agonist CP55940 than for WIN55,212-2 (WIN55). In electrophysiological studies, WIN55 and CP55940 reduced miniature inhibitory postsynaptic currents (mIPSCs) frequency, but not amplitude. PSNCBAM-1 application alone had no effect on mIPSCs; however, PSNCBAM-1 pre-treatment revealed agonist-dependent functional antagonism, abolishing CP55940-induced reductions in mIPSC frequency, but having no clear effect on WIN55 actions. The CB1 antagonist/inverse agonist AM251 increased mIPSC frequency beyond control, this effect was reversed by PSNCBAM-1. PSNCBAM-1 pre-treatment also attenuated AM251 effects. Thus, PSNCBAM-1 reduced CB1 receptor ligand functional efficacy in the cerebellum. The differential effect of PSNCBAM-1 on CP55940 versus WIN55 actions in [35S]GTPγS binding and electrophysiological studies and the attenuation of AM251 effects are consistent with the ligand-dependency associated with allosteric modulation. These data provide the first description of functional PSNCBAM-1 allosteric antagonist effects on neuronal excitability in the mammalian CNS. PSNCBAM-1 allosteric antagonism may provide viable therapeutic alternatives to orthosteric CB1 antagonists/inverse agonists in the treatment of CNS disease.
Resumo:
The potency of RNA interference (RNAi) undoubtedly can be improved through chemical modifications to the small interfering RNAs (siRNA). By incorporation of the 3′-S-phosphorothiolate modification into strands of RNA, it is hoped that specific regions of a siRNA duplex can be stabilised to enhance the target binding affinity of a selected antisense strand into the activated RNA-induced silencing complex (RISC*). Oligonucleotides composed entirely of this modification are desirable so unconventional 5′ → 3′ synthesis is investigated, with initial solution-phase testing proving successful. The phosphoroamidite monomer required for solid-phase synthesis has also been produced.
Resumo:
Angiotensin I-converting enzyme (ACE) inhibition is one of the mechanisms by which reduction in blood pressure is exerted. Whey proteins are a rich source of ACE inhibitory peptides and have shown a blood pressure reduction effect i.e. antihypertensive activity. The aim of this work was to develop a simplified process using a combination of adsorption and microfiltration steps for the production of hydrolysates from whey with high ACE inhibitory activity and potency; the latter was measured as the IC50, which is the peptide concentration required to reduce ACE activity by half. This process integrates the selective separation of β-lactoglobulin and casein derived peptides (CDP) from rennet whey and their hydrolysis, which results in partially pure, less complex hydrolysates with high bioactive potency. Hydrolysis was carried out with protease N ‘Amano’ in a thermostatically controlled membrane reactor operated in a batch mode. By applying the integrative approach it was possible to produce from the same feedstock two different hydrolysates that exhibited high ACE inhibition. One hydrolysate was mainly composed of casein-derived peptides with IC50= 285 μg/mL. In this hydrolysate we identified the well known potent ACE-I and anti-hypertensive tri-peptide Ile-Pro-Pro (IPP) and another novel octa-peptide Gln-Asp-Lys-Thr-Glu-Ile-Pro-Thr (QDKTEIPT). The second hydrolysate was mainly composed of β-lactoglobulin derived peptides with IC50=128 µg/mL. This hydrolysate contained a tetra-peptide (Ile-Ile-Ala-Glu) IIAE as one of the two major peptides. A further advantage to this process is that enzyme activity was substantially increased as enzyme product inhibition was reduced.