32 resultados para Postharvest diseases
Resumo:
The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268±28 g/l) compared with control healthy subjects (mean 131±10 g/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150g/l) compared with human serum (median 6g/l) or human milk (median 25g/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate.
Resumo:
Some proponents of local knowledge, such as Sillitoe (2010), have expressed second thoughts about its capacity to effect development on the ‘revolutionary’ scale once predicted. Our argument in this article follows a similar route. Recent research into the management of livestock in South Africa makes clear that rural African livestock farmers experience uncertainty in relation to the control of stock diseases. State provision of veterinary services has been significantly reduced over the past decade. Both white and African livestock owners are to a greater extent left to their own devices. In some areas of animal disease management, African livestock owners have recourse to tried-and-tested local remedies, which are largely plant-based. But especially in the critical sphere of tick control, efficacious treatments are less evident, and livestock owners struggle to find adequate solutions to high tickloads. This is particularly important in South Africa in the early twenty-first century because land reform and the freedom to purchase land in the post-apartheid context affords African stockowners opportunities to expand livestock holdings. Our research suggests that the limits of local knowledge in dealing with ticks is one of the central problems faced by African livestock owners. We judge this not only in relation to efficacy but also the perceptions of livestock owners themselves. While confidence and practice varies, and there is increasing resort of chemical acaricides we were struck by the uncertainty of livestock owners over the best strategies.
Resumo:
The emergence and spread of infectious diseases reflects the interaction of ecological and economic factors within an adaptive complex system. We review studies that address the role of economic factors in the emergence and spread of infectious diseases and identify three broad themes. First, the process of macro-economic growth leads to environmental encroaching, which is related to the emergence of infectious diseases. Second, there are a number of mutually reinforcing processes associated with the emergence/spread of infectious diseases. For example, the emergence and spread of infectious diseases can cause significant economic damages, which in turn may create the conditions for further disease spread. Also, the existence of a mutually reinforcing relationship between global trade and macroeconomic growth amplifies the emergence/spread of infectious diseases. Third, microeconomic approaches to infectious disease point to the adaptivity of human behavior, which simultaneously shapes the course of epidemics and responds to it. Most of the applied research has been focused on the first two aspects, and to a lesser extent on the third aspect. With respect to the latter, there is a lack of empirical research aimed at characterizing the behavioral component following a disease outbreak. Future research should seek to fill this gap and develop hierarchical econometric models capable of integrating both macro and micro-economic processes into disease ecology.
Resumo:
Accelerated climate change affects components of complex biological interactions differentially, often causing changes that are difficult to predict. Crop yield and quality are affected by climate change directly, and indirectly, through diseases that themselves will change but remain important. These effects are difficult to dissect and model as their mechanistic bases are generally poorly understood. Nevertheless, a combination of integrated modelling from different disciplines and multi-factorial experimentation will advance our understanding and prioritisation of the challenges. Food security brings in additional socio-economic, geographical and political factors. Enhancing resilience to the effects of climate change is important for all these systems and functional diversity is one of the most effective targets for improved sustainability.
Resumo:
BACKGROUND. To use spectra acquired by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) from pre- and post-digital rectal examination (DRE) urine samples to search for discriminating peaks that can adequately distinguish between benign and malignant prostate conditions, and identify the peaks’ underlying biomolecules. METHODS. Twenty-five participants with prostate cancer (PCa) and 27 participants with a variety of benign prostatic conditions as confirmed by a 10-core tissue biopsy were included. Pre- and post-DRE urine samples were prepared for MALDI MS profiling using an automated clean-up procedure. Following mass spectra collection and processing, peak mass and intensity were extracted and subjected to statistical analysis to identify peaks capable of distinguishing between benign and cancer. Logistic regression was used to combine markers to create a sensitive and specific test. RESULTS. A peak at m/z 10,760 was identified as b-microseminoprotein (b-MSMB) and found to be statistically lower in urine from PCa participants using the peak’s average areas. By combining serum prostate-specific antigen (PSA) levels with MALDI MS-measured b-MSMB levels, optimum threshold values obtained from Receiver Operator characteristics curves gave an increased sensitivity of 96% at a specificity of 26%. CONCLUSIONS. These results demonstrate that with a simple sample clean-up followed by MALDI MS profiling, significant differences of MSMB abundance were found in post-DRE urine samples. In combination with PSA serum levels, obtained from a classic clinical assay led to high classification accuracy for PCa in the studied sample set. Our results need to be validated in a larger multicenter prospective randomized clinical trial.
Resumo:
Immunodiagnostic microneedles provide a novel way to extract protein biomarkers from the skin in a minimally invasive manner for analysis in vitro. The technology could overcome challenges in biomarker analysis specifically in solid tissue, which currently often involves invasive biopsies. This study describes the development of a multiplex immunodiagnostic device incorporating mechanisms to detect multiple antigens simultaneously, as well as internal assay controls for result validation. A novel detection method is also proposed. It enables signal detection specifically at microneedle tips and therefore may aid the construction of depth profiles of skin biomarkers. The detection method can be coupled with computerised densitometry for signal quantitation. The antigen specificity, sensitivity and functional stability of the device were assessed against a number of model biomarkers. Detection and analysis of endogenous antigens (interleukins 1α and 6) from the skin using the device was demonstrated. The results were verified using conventional enzyme-linked immunosorbent assays. The detection limit of the microneedle device, at ≤10 pg/mL, was at least comparable to conventional plate-based solid-phase enzyme immunoassays.
Resumo:
Irrigation is a major husbandry tool, vital for world food production and security. The purpose of this review is twofold:- firstly drawing attention to the beneficial and deleterious aspects of irrigation resulting from interactions with the microbial world; secondly, forming a basis for encouraging further research and development. Irrigation is for example, a valuable component in the control of some soil borne pathogens such as Streptomyces scabies, the cause of potato common scab and Fusarium cubense, a cause of banana wilt. By contrast, applying irrigation encourages some foliar pathogens and factors such as splash dispersal of propagules and the retention of leaf wetness are important elements in the successful establishment of disease foci. Irrigation applied at low levels in the canopy directly towards the stem bases and root zones of plants also provides means encouraging disease development. Irrigation also offers means for the direct spread of microbes such as water borne moulds, Oomycetes, and plasmodial pathogens coming from populations present in the water supply. The presence of plant disease causing microbes in sources of irrigation has been associated with outbreaks of diseases such as clubroot (Plasmodiophora brassicae). Irrigation can be utilised as a means for applying agrochemicals, fungigation. The developing technologies of water restriction and root zone drying also have an impact on the success of disease causing organisms. This is an emerging technology and its interactions with benign and pathogenic microbes require consideration.
Resumo:
The aim of this work is to build on the success of in vitro studies of an active packaging, produced by coating the surface of post-consumer recycled polyethylene terephthalate (PCRPET) package with an aqueous silicone solution (2%, v/v) containing an antifungal agent (potassium sorbate, KS). Antifungal efficacy was evaluated, in vivo, during the storage of raspberries, blackberries and blueberries by examining their shelf life extension. The packaging effectively delayed the growth of Botrytis by extending its lag-phase, which, in turn, extended the shelf life of the berries by up to 3d. Among the three berries tested, the packaging proved to be more advantageous in the case of raspberries, due to their physiological characteristics and shorter shelf life. Based on sensory panel evaluations, it was shown that the coating, containing KS, did not influence the packaging appearance and transparency, and the fruit did not suffer from any off-flavor development.
Resumo:
Background 29 autoimmune diseases, including Rheumatoid Arthritis, gout, Crohn’s Disease, and Systematic Lupus Erythematosus affect 7.6-9.4% of the population. While effective therapy is available, many patients do not follow treatment or use medications as directed. Digital health and Web 2.0 interventions have demonstrated much promise in increasing medication and treatment adherence, but to date many Internet tools have proven disappointing. In fact, most digital interventions continue to suffer from high attrition in patient populations, are burdensome for healthcare professionals, and have relatively short life spans. Objective Digital health tools have traditionally centered on the transformation of existing interventions (such as diaries, trackers, stage-based or cognitive behavioral therapy programs, coupons, or symptom checklists) to electronic format. Advanced digital interventions have also incorporated attributes of Web 2.0 such as social networking, text messaging, and the use of video. Despite these efforts, there has not been little measurable impact in non-adherence for illnesses that require medical interventions, and research must look to other strategies or development methodologies. As a first step in investigating the feasibility of developing such a tool, the objective of the current study is to systematically rate factors of non-adherence that have been reported in past research studies. Methods Grounded Theory, recognized as a rigorous method that facilitates the emergence of new themes through systematic analysis, data collection and coding, was used to analyze quantitative, qualitative and mixed method studies addressing the following autoimmune diseases: Rheumatoid Arthritis, gout, Crohn’s Disease, Systematic Lupus Erythematosus, and inflammatory bowel disease. Studies were only included if they contained primary data addressing the relationship with non-adherence. Results Out of the 27 studies, four non-modifiable and 11 modifiable risk factors were discovered. Over one third of articles identified the following risk factors as common contributors to medication non-adherence (percent of studies reporting): patients not understanding treatment (44%), side effects (41%), age (37%), dose regimen (33%), and perceived medication ineffectiveness (33%). An unanticipated finding that emerged was the need for risk stratification tools (81%) with patient-centric approaches (67%). Conclusions This study systematically identifies and categorizes medication non-adherence risk factors in select autoimmune diseases. Findings indicate that patients understanding of their disease and the role of medication are paramount. An unexpected finding was that the majority of research articles called for the creation of tailored, patient-centric interventions that dispel personal misconceptions about disease, pharmacotherapy, and how the body responds to treatment. To our knowledge, these interventions do not yet exist in digital format. Rather than adopting a systems level approach, digital health programs should focus on cohorts with heterogeneous needs, and develop tailored interventions based on individual non-adherence patterns.