32 resultados para Pontes, Belchior de, 1644-1719.
Resumo:
Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. As regards the starch content in the seeds of crop plants, there are distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare the evolutionary rate, gene duplication and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed (i) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred prior to the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots; (ii) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed; (iii) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, e.g. AGPase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.
Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates
Resumo:
The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cisregulatory regions play a dominant role in phenotypic evolution. Key words: ASPM, MCPH1, CDK5RAP2, CENPJ, brain, neurogenesis, primates.
Resumo:
Abstract: Movements away from the natal or home territory are important to many ecological processes, including gene flow, population regulation, and disease epidemiology, yet quantitative data on these behaviors are lacking. Red foxes exhibit 2 periods of extraterritorial movements: when an individual disperses and when males search neighboring territories for extrapair copulations during the breeding season. Using radiotracking data collected at 5-min interfix intervals, we compared movement parameters, including distance moved, speed of movement, and turning angles, of dispersal and reproductive movements to those made during normal territorial movements; the instantaneous separation distances of dispersing and extraterritorial movements to the movements of resident adults; and the frequency of locations of 95%, 60%, and 30% harmonic mean isopleths of adult fox home territories to randomly generated fox movements. Foxes making reproductive movements traveled farther than when undertaking other types of movement, and dispersal movements were straighter. Reproductive and dispersal movements were faster than territorial movements and also differed in intensity of search and thoroughness. Foxes making dispersal movements avoided direct contact with territorial adults and moved through peripheral areas of territories. The converse was true for reproductive movements. Although similar in some basic characteristics, dispersal and reproductive movements are fundamentally different both behaviorally and spatially and are likely to have different ultimate purposes and contrasting effects on spatial processes such as disease transmission
Resumo:
Root nodule symbiosis (RNS) is one of the most efficient biological systems for nitrogen fixation and it occurs in 90% of genera in the Papilionoideae, the largest subfamily of legumes. Most papilionoid species show evidence of a polyploidy event occurred approximately 58 million years ago. Although polyploidy is considered to be an important evolutionary force in plants, the role of this papilionoid polyploidy event, especially its association with RNS, is not understood. In this study, we explored this role using an integrated comparative genomic approach and conducted gene expression comparisons and gene ontology enrichment analyses. The results show the following: (1) approximately a quarter of the papilionoid-polyploidy-derived duplicate genes are retained; (2) there is a striking divergence in the level of expression of gene duplicate pairs derived from the polyploidy event; and (3) the retained duplicates are frequently involved in the processes crucial for RNS establishment, such as symbiotic signalling, nodule organogenesis, rhizobial infection and nutrient exchange and transport. Thus, we conclude that the papilionoid polyploidy event might have further refined RNS and induced a more robust and enhanced symbiotic system. This conclusion partly explains the widespread occurrence of the Papilionoideae.
Resumo:
The psychometric properties of scores from the Achievement Goal Questionnaire were examined in samples of Japanese (N = 326) and Canadian (N = 307) post secondary students. Previous research found evidence of a four-factor structure of achievement goals in U.S. samples. Using confirmatory factor-analytic techniques, the authors found strong evidence for the four-factor structure of achievement goals in both the Canadian and Japanese populations. Subsequent multi group structural equation modeling indicated the metric invariance of this four-factor structure across the two populations.
Resumo:
A multithickness sea ice model explicitly accounting for the ridging and sliding friction contributions to sea ice stress is developed. Both ridging and sliding contributions depend on the deformation type through functions adopted from the Ukita and Moritz kinematic model of floe interaction. In contrast to most previous work, the ice strength of a uniform ice sheet of constant ice thickness is taken to be proportional to the ice thickness raised to the 3/2 power, as is revealed in discrete element simulations by Hopkins. The new multithickness sea ice model for sea ice stress has been implemented into the Los Alamos “CICE” sea ice model code and is shown to improve agreement between model predictions and observed spatial distribution of sea ice thickness in the Arctic.
Resumo:
There is strong evidence that neonates imitate previously unseen behaviors. These behaviors are predominantly used in social interactions, demonstrating neonates’ ability and motivation to engage with others. Research on neonatal imitation can provide a wealth of information about the early mirror neuron system (MNS): namely, its functional characteristics, its plasticity from birth, and its relation to skills later in development. Though numerous studies document the existence of neonatal imitation in the laboratory, little is known about its natural occurrence during parent-infant interactions and its plasticity as a consequence of experience. We review these critical aspects of imitation, which we argue are necessary for understanding the early action-perception system. We address common criticisms and misunderstandings about neonatal imitation and discuss methodological differences among studies. Recent work reveals that individual differences in neonatal imitation positively correlate with later social, cognitive, and motor development. We propose that such variation in neonatal imitation could reflect important individual differences of the MNS. Although postnatal experience is not necessary for imitation, we present evidence that neonatal imitation is influenced by experience in the first week of life.
Resumo:
A method has been developed to estimate Aerosol Optical Depth (AOD), Fine Mode Fraction (FMF) and Single Scattering Albedo (SSA) over land surfaces using simulated Sentinel-3 data. The method uses inversion of a coupled surface/atmosphere radiative transfer model, and includes a general physical model of angular surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values for a number of view angles and wavelengths with those provided by the physical model. A method of estimating AOD using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3 and the additional aerosol properties. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground based sun-photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.
Resumo:
Evolution of resistance to drugs and pesticides poses a serious threat to human health and agricultural production. CYP51 encodes the target site of azole fungicides, widely used clinically and in agriculture. Azole resistance can evolve due to point mutations or overexpression of CYP51, and previous studies have shown that fungicide-resistant alleles have arisen by de novo mutation. Paralogs CYP51A and CYP51B are found in filamentous ascomycetes, but CYP51A has been lost from multiple lineages. Here, we show that in the barley pathogen Rhynchosporium commune, re-emergence of CYP51A constitutes a novel mechanism for the evolution of resistance to azoles. Pyrosequencing analysis of historical barley leaf samples from a unique long-term experiment from 1892 to 2008 indicates that the majority of the R. commune population lacked CYP51A until 1985, after which the frequency of CYP51A rapidly increased. Functional analysis demonstrates that CYP51A retains the same substrate as CYP51B, but with different transcriptional regulation. Phylogenetic analyses show that the origin of CYP51A far predates azole use, and newly sequenced Rhynchosporium genomes show CYP51A persisting in the R. commune lineage rather than being regained by horizontal gene transfer; therefore, CYP51A re-emergence provides an example of adaptation to novel compounds by selection from standing genetic variation.
Resumo:
We develop a method to derive aerosol properties over land surfaces using combined spectral and angular information, such as available from ESA Sentinel-3 mission, to be launched in 2015. A method of estimating aerosol optical depth (AOD) using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3. The method aims to improve the estimation of AOD, and to explore the estimation of fine mode fraction (FMF) and single scattering albedo (SSA) over land surfaces by inversion of a coupled surface/atmosphere radiative transfer model. The surface model includes a general physical model of angular and spectral surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values to the physical model. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground-based sun photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.
Resumo:
This paper aims to identify the circulation associated with Easterly Wave Disturbances (EWDs) that propagate toward the Eastern Northeast Brazil (ENEB) and their impact on the rainfall over ENEB during 2006 and 2007 rainy seasons (April–July). The EWDs identification and trajectory are analyzed using an automatic tracking technique (TracKH). The EWDs circulation patterns and their main features were obtained using the composite technique. To evaluate the TracKH efficiency, a validation was done by comparing the EWDs number tracked against observed cases obtained from an observational analysis. The mean characteristics of EWDs are 5.5-day period, propagation speed of ~9.5 m·s−1, and a 4500 km wavelength. A synoptic analysis shows that between days −2 d and 0 d, the low level winds presented cyclonic relative vorticity and convergence anomalies both in 2006 and 2007. The EWDs signals are strongest at low levels. The EWDs propagation is associated with relative humidity and precipitation positive anomalies and OLR and omega negative anomalies. The EWDs tracks are seen over all ENEB and their lysis occurs between the ENEB and marginally inside the continent. The tracking captured 71% of EWDs in all periods, indicating that an objective analysis is a promising method for EWDs detection.
Resumo:
Looking at and listening to picture and story books is a ubiquitous activity, frequently enjoyed by many young children and their parents. Well before children can read for themselves they are able to learn from books. Looking at and listening to books increases children’s general knowledge, understanding about the world and promotes language acquisition. This collection of papers demonstrates the breadth of information pre-reading children learn from books and increases our understanding of the social and cognitive mechanisms that support this learning. Our hope is that this Research Topic/eBook will be useful for researchers as well as educational practitioners and parents who are interested in optimizing children’s learning. We conceptually divide this research topic into four broad sections, which focus on the nature and attributes of picture and story books, what children learn from picture and story books, the interactions children experience during shared reading, and potential applications of research into shared reading, respectively.