24 resultados para Polynomials.
Resumo:
Smooth trajectories are essential for safe interaction in between human and a haptic interface. Different methods and strategies have been introduced to create such smooth trajectories. This paper studies the creation of human-like movements in haptic interfaces, based on the study of human arm motion. These motions are intended to retrain the upper limb movements of patients that lose manipulation functions following stroke. We present a model that uses higher degree polynomials to define a trajectory and control the robot arm to achieve minimum jerk movements. It also studies different methods that can be driven from polynomials to create more realistic human-like movements for therapeutic purposes.
Resumo:
The Routh-stability method is employed to reduce the order of discrete-time system transfer functions. It is shown that the Routh approximant is well suited to reduce both the denominator and the numerator polynomials, although alternative methods, such as PadÃ�Â(c)-Markov approximation, are also used to fit the model numerator coefficients.
Resumo:
Identifying a periodic time-series model from environmental records, without imposing the positivity of the growth rate, does not necessarily respect the time order of the data observations. Consequently, subsequent observations, sampled in the environmental archive, can be inversed on the time axis, resulting in a non-physical signal model. In this paper an optimization technique with linear constraints on the signal model parameters is proposed that prevents time inversions. The activation conditions for this constrained optimization are based upon the physical constraint of the growth rate, namely, that it cannot take values smaller than zero. The actual constraints are defined for polynomials and first-order splines as basis functions for the nonlinear contribution in the distance-time relationship. The method is compared with an existing method that eliminates the time inversions, and its noise sensitivity is tested by means of Monte Carlo simulations. Finally, the usefulness of the method is demonstrated on the measurements of the vessel density, in a mangrove tree, Rhizophora mucronata, and the measurement of Mg/Ca ratios, in a bivalve, Mytilus trossulus.
Resumo:
[English] This paper is a tutorial introduction to pseudospectral optimal control. With pseudospectral methods, a function is approximated as a linear combination of smooth basis functions, which are often chosen to be Legendre or Chebyshev polynomials. Collocation of the differential-algebraic equations is performed at orthogonal collocation points, which are selected to yield interpolation of high accuracy. Pseudospectral methods directly discretize the original optimal control problem to recast it into a nonlinear programming format. A numerical optimizer is then employed to find approximate local optimal solutions. The paper also briefly describes the functionality and implementation of PSOPT, an open source software package written in C++ that employs pseudospectral discretization methods to solve multi-phase optimal control problems. The software implements the Legendre and Chebyshev pseudospectral methods, and it has useful features such as automatic differentiation, sparsity detection, and automatic scaling. The use of pseudospectral methods is illustrated in two problems taken from the literature on computational optimal control. [Portuguese] Este artigo e um tutorial introdutorio sobre controle otimo pseudo-espectral. Em metodos pseudo-espectrais, uma funcao e aproximada como uma combinacao linear de funcoes de base suaves, tipicamente escolhidas como polinomios de Legendre ou Chebyshev. A colocacao de equacoes algebrico-diferenciais e realizada em pontos de colocacao ortogonal, que sao selecionados de modo a minimizar o erro de interpolacao. Metodos pseudoespectrais discretizam o problema de controle otimo original de modo a converte-lo em um problema de programa cao nao-linear. Um otimizador numerico e entao empregado para obter solucoes localmente otimas. Este artigo tambem descreve sucintamente a funcionalidade e a implementacao de um pacote computacional de codigo aberto escrito em C++ chamado PSOPT. Tal pacote emprega metodos de discretizacao pseudo-spectrais para resolver problemas de controle otimo com multiplas fase. O PSOPT permite a utilizacao de metodos de Legendre ou Chebyshev, e possui caractersticas uteis tais como diferenciacao automatica, deteccao de esparsidade e escalonamento automatico. O uso de metodos pseudo-espectrais e ilustrado em dois problemas retirados da literatura de controle otimo computacional.
Resumo:
Vekua operators map harmonic functions defined on domain in \mathbb R2R2 to solutions of elliptic partial differential equations on the same domain and vice versa. In this paper, following the original work of I. Vekua (Ilja Vekua (1907–1977), Soviet-Georgian mathematician), we define Vekua operators in the case of the Helmholtz equation in a completely explicit fashion, in any space dimension N ≥ 2. We prove (i) that they actually transform harmonic functions and Helmholtz solutions into each other; (ii) that they are inverse to each other; and (iii) that they are continuous in any Sobolev norm in star-shaped Lipschitz domains. Finally, we define and compute the generalized harmonic polynomials as the Vekua transforms of harmonic polynomials. These results are instrumental in proving approximation estimates for solutions of the Helmholtz equation in spaces of circular, spherical, and plane waves.
Resumo:
In this paper, we study the approximation of solutions of the homogeneous Helmholtz equation Δu + ω 2 u = 0 by linear combinations of plane waves with different directions. We combine approximation estimates for homogeneous Helmholtz solutions by generalized harmonic polynomials, obtained from Vekua’s theory, with estimates for the approximation of generalized harmonic polynomials by plane waves. The latter is the focus of this paper. We establish best approximation error estimates in Sobolev norms, which are explicit in terms of the degree of the generalized polynomial to be approximated, the domain size, and the number of plane waves used in the approximations.
Resumo:
In this paper we study convergence of the L2-projection onto the space of polynomials up to degree p on a simplex in Rd, d >= 2. Optimal error estimates are established in the case of Sobolev regularity and illustrated on several numerical examples. The proof is based on the collapsed coordinate transform and the expansion into various polynomial bases involving Jacobi polynomials and their antiderivatives. The results of the present paper generalize corresponding estimates for cubes in Rd from [P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163].
Resumo:
In this paper we propose and analyze a hybrid $hp$ boundary element method for the solution of problems of high frequency acoustic scattering by sound-soft convex polygons, in which the approximation space is enriched with oscillatory basis functions which efficiently capture the high frequency asymptotics of the solution. We demonstrate, both theoretically and via numerical examples, exponential convergence with respect to the order of the polynomials, moreover providing rigorous error estimates for our approximations to the solution and to the far field pattern, in which the dependence on the frequency of all constants is explicit. Importantly, these estimates prove that, to achieve any desired accuracy in the computation of these quantities, it is sufficient to increase the number of degrees of freedom in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods.
Resumo:
In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.