27 resultados para Polish Impact Factor
Resumo:
We investigate the role of the anthropogenic heat flux on the urban heat island of London. To do this, the time-varying anthropogenic heat flux is added to an urban surface-energy balance parametrization, the Met Office–Reading Urban Surface Exchange Scheme (MORUSES), implemented in a 1 km resolution version of the UK Met Office Unified Model. The anthropogenic heat flux is derived from energy-demand data for London and is specified on the model's 1 km grid; it includes variations on diurnal and seasonal time-scales. We contrast a spring case with a winter case, to illustrate the effects of the larger anthropogenic heat flux in winter and the different roles played by thermodynamics in the different seasons. The surface-energy balance channels the anthropogenic heat into heating the urban surface, which warms slowly because of the large heat capacity of the urban surface. About one third of this additional warming goes into increasing the outgoing long-wave radiation and only about two thirds goes into increasing the sensible heat flux that warms the atmosphere. The anthropogenic heat flux has a larger effect on screen-level temperatures in the winter case, partly because the anthropogenic flux is larger then and partly because the boundary layer is shallower in winter. For the specific winter case studied here, the anthropogenic heat flux maintains a well-mixed boundary layer through the whole night over London, whereas the surrounding rural boundary layer becomes strongly stably stratified. This finding is likely to have important implications for air quality in winter. On the whole, inclusion of the anthropogenic heat flux improves the comparison between model simulations and measurements of screen-level temperature slightly and indicates that the anthropogenic heat flux is beginning to be an important factor in the London urban heat island.
Resumo:
Public health strategies for reducing the risk of coronary heart disease have focused on lowering plasma lipids, particularly cholesterol levels, with recent studies also highlighting triacylglycerol (TAG) as an important modifiable risk factor. One approach is to supplement the diet with probiotics, prebiotics or synbiotics. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Putative health benefits include improved resistance to gastrointestinal infections, reduction in lipid levels and stimulation of the immune system. Prebiotics are selectively fermented dietary components that are aimed at improving host health through selective fermentation by the gut microbiota, such as bifidobacteria and lactobacilli. Animal studies have shown prebiotics to markedly reduce circulating TAG and to a lesser extent cholesterol concentrations, with favourable but inconsistent findings with respect to changes in lipid levels in human studies. Here we provide an overview of the effects, and possible mechanisms, of probiotics, prebiotics and synbiotics (combination of a probiotic and prebiotic) on circulating lipeamia in humans.
Resumo:
The Hadley Centre Global Environmental Model (HadGEM) includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC), and the new Global Model of Aerosol Processes (GLOMAP-mode). GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000–2006. HadGEM simulations of the aerosol optical depth using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. Because of differences in wet deposition rates, GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and abilities to affect cloud droplet number, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a presentday direct aerosol forcing of −0.49Wm−2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This difference is compensated by changes in first indirect aerosol forcing: the forcing of −1.17Wm−2 obtained with GLOMAP-mode is 20% weaker than with CLASSIC. Results suggest that mass-based schemes such as CLASSIC lack the necessary sophistication to provide realistic input to aerosol-cloud interaction schemes. Furthermore, the importance of the 1850 baseline highlights how model skill in predicting present-day aerosol does not guarantee reliable forcing estimates. Those findings suggest that the more complex representation of aerosol processes in microphysical schemes improves the fidelity of simulated aerosol forcings.
Resumo:
AIMS/HYPOTHESIS: The PPARGC1A gene coactivates multiple nuclear transcription factors involved in cellular energy metabolism and vascular stasis. In the present study, we genotyped 35 tagging polymorphisms to capture all common PPARGC1A nucleotide sequence variations and tested for association with metabolic and cardiovascular traits in 2,101 Danish and Estonian boys and girls from the European Youth Heart Study, a multicentre school-based cross-sectional cohort study. METHODS: Fasting plasma glucose concentrations, anthropometric variables and blood pressure were measured. Habitual physical activity and aerobic fitness were objectively assessed using uniaxial accelerometry and a maximal aerobic exercise stress test on a bicycle ergometer, respectively. RESULTS: In adjusted models, nominally significant associations were observed for BMI (rs10018239, p = 0.039), waist circumference (rs7656250, p = 0.012; rs8192678 [Gly482Ser], p = 0.015; rs3755863, p = 0.02; rs10018239, beta = -0.01 cm per minor allele copy, p = 0.043), systolic blood pressure (rs2970869, p = 0.018) and fasting glucose concentrations (rs11724368, p = 0.045). Stronger associations were observed for aerobic fitness (rs7656250, p = 0.005; rs13117172, p = 0.008) and fasting glucose concentrations (rs7657071, p = 0.002). None remained significant after correcting for the number of statistical comparisons. We proceeded by testing for gene x physical activity interactions for the polymorphisms that showed nominal evidence of association in the main effect models. None of these tests was statistically significant. CONCLUSIONS/INTERPRETATION: Variants at PPARGC1A may influence several metabolic traits in this European paediatric cohort. However, variation at PPARGC1A is unlikely to have a major impact on cardiovascular or metabolic health in these children.
Resumo:
CVD are the leading cause of death worldwide. Hypertension, a major controllable risk factor of CVD, is intimately associated with vascular dysfunction, a defect which is also now recognised to be a major, modifiable risk factor for the development of CVD. The purpose of the present review was to critically evaluate the evidence for the effects of milk proteins and their associated peptides on blood pressure (BP) and vascular dysfunction. After a detailed literature search, the number of human trials evaluating the antihypertensive effects of casein-derived peptides (excluding isoleucine-proline-proline and valine-proline-proline) was found to be limited; the studies were preliminary with substantial methodological limitations. Likewise, the data from human trials that examined the effects of whey protein and peptides were also scarce and inconsistent. To date, only one study has conducted a comparative investigation on the relative effects of the two main intact milk proteins on BP and vascular function. While both milk proteins were shown to reduce BP, only whey protein improved measures of arterial stiffness. In contrast, a growing number of human trials have produced evidence to support beneficial effects of both milk proteins and peptides on vascular health. However, comparison of the relative outcomes from these trials is difficult owing to variation in the forms of assessment and measures of vascular function. In conclusion, there is an accumulating body of evidence to support positive effects of milk proteins in improving and/or maintaining cardiovascular health. However, the variable quality of the studies that produced this evidence, and the lack of robust, randomised controlled intervention trials, undermines the formulation of firm conclusions on the potential benefits of milk proteins and peptides on vascular health.
Resumo:
Anticoagulants rodenticides have already known for over half a century, as effective and safe method of rodent control. However, discovered in 1958 anticoagulant resistance has given us a very important problem for their future long-term use. Laboratory tests provide the main method for identification the different types of anticoagulant resistances, quantify the magnitude of their effect and help us to choose the best pest control strategy. The main important tests are lethal feeding period (LFP) and blood clotting response (BCR) tests. These tests can now be used to quantify the likely effect of the resistance on treatment outcome by providing an estimate of the ‘resistance factor’. In 2004 the gene responsible for anticoagulant resistance (VKORC1) was identified and sequenced. As a result, a new molecular resistance testing methodology has been developed, and a number of resistance mutations, particularly in Norway rats and house mice. Three mutations of the VKORC1 gene in Norway rats have been identified to date that confer a degree of resistance to bromadiolone and difenacoum, sufficient to affect treatment outcome in the field.
Resumo:
Persistent contrails are an important climate impact of aviation which could potentially be reduced by re-routing aircraft to avoid contrailing; however this generally increases both the flight length and its corresponding CO emissions. Here, we provide a simple framework to assess the trade-off between the climate impact of CO emissions and contrails for a single flight, in terms of the absolute global warming potential and absolute global temperature potential metrics for time horizons of 20, 50 and 100 years. We use the framework to illustrate the maximum extra distance (with no altitude changes) that can be added to a flight and still reduce its overall climate impact. Small aircraft can fly up to four times further to avoid contrailing than large aircraft. The results have a strong dependence on the applied metric and time horizon. Applying a conservative estimate of the uncertainty in the contrail radiative forcing and climate efficacy leads to a factor of 20 difference in the maximum extra distance that could be flown to avoid a contrail. The impact of re-routing on other climatically-important aviation emissions could also be considered in this framework.
Resumo:
A chemistry-climate model coupled to an ocean model is used to compare the climate impact of past (1960-2010) changes in concentrations of halocarbons with those of CO2 in the tropical upper troposphere and lower stratosphere. The halocarbon contribution to both upper troposphere warming and the associated increase in lower stratospheric upwelling is about 40% as large as that due to CO2. Trends in cold-point temperature and lower stratosphere water vapor are positive for both halocarbons and CO2, and are of about the same magnitude. Trends in lower stratosphere ozone are negative, due to the increased upwelling. These increases in water vapor and decreases in lower stratosphere ozone feed back on lower stratosphere temperature through radiative cooling. The radiative cooling from ozone is about a factor of two larger than that from water vapor in the vicinity of the cold-point tropopause, while water vapor dominates at heights above 50 hPa. For halocarbons this indirect radiative cooling more than offsets the direct radiative warming, and together with the adiabatic cooling accounts for the lack of a halocarbon-induced warming of the lower stratosphere. For CO2 the indirect cooling from increased water vapor and decreased ozone is of comparable magnitude to the direct warming from CO2 in the vicinity of the cold-point tropopause, and (together with the increased upwelling) lowers the height at which CO2 increases induce stratospheric cooling, thus explaining the relatively weak increase in cold-point temperature due to the CO2 increases.
Resumo:
It is widely acknowledged that innovation is one of the pillars of multinational enterprises (MNEs) and that technological knowledge from different host locations is a key factor to the MNEs’ competitive advantages development. Concerning these assumptions, in this paper we aim to understand how the social and the relational contexts affect the conventional and reverse transfer of innovation from MNEs’ subsidiaries hosted in emerging markets. We analyzed the social context through the institutional profile (CIP) level and the relational context through trust and integration levels utilizing a survey sent to 172 foreign subsidiaries located in Brazil, as well as secondary data. Through an ordinary least squares regression (OLS) analysis we found that the relational context affects the conventional and reverse innovation transfer in subsidiaries hosted in emerging markets. We however did not find support for the social context effect.
Resumo:
Anthropogenic ocean heat uptake is a key factor in determining climate change and sea-level rise. There is considerable uncertainty in projections of freshwater forcing of the ocean, with the potential to influence ocean heat uptake. We investigatethis by adding either -0.1 Sv or +0.1 Sv freshwater to the Atlantic in global climate model simulations, simultaneously imposing an atmospheric CO2 increase. The resulting changes in the Atlantic meridional overturning circulation are roughly equal and opposite (±2Sv). The impact of the perturbation on ocean heat content is more complex, although it is relatively small (~5%) compared to the total anthropogenic heat uptake. Several competing processes either accelerate or retard warming at different depths. Whilst positive freshwater perturbations cause an overall heating of the Atlantic, negative perturbations produce insignificant net changes in heat content. The processes active in our model appear robust, although their net result is likely model- and experiment-dependent.
Resumo:
Our study investigated the effects of condensed tannins (CT) on rumen in vitro methane (CH4) production and fermentation characteristics by incubating lucerne in buffered rumen fluid in combination with different CT extracts at 0 (control), 40, 80 and 120 g CT/kg of substrate DM. Condensed tannins were extracted from four sainfoin accessions: Rees ‘A’, CPI63763, Cotswold Common and CPI63767. Gas production (GP) was measured using a fully automated GP apparatus with CH4 measured at distinct time points. Condensed tannins differed substantially in terms of polymer size and varied from 13 (Rees ‘A’) to 73 (CPI63767) mean degree of polymerization, but had relatively similar characteristics in terms of CT content, procyanidin: prodelphinidin (PC: PD) and cis:trans ratios. Compared to control, addition of CT from CPI63767 and CPI63763 at 80 and 120 g CT/kg of substrate DM reduced CH4 by 43% and 65%, and by 23% and 57%, respectively, after 24-h incubation. Similarly, CT from Rees ‘A’ and Cotswold Common reduced CH4 by 26% and 46%, and by 28% and 46% respectively. Addition of increasing level of CT linearly reduced the maximum rates of GP and CH4 production, and the estimated in vitro organic matter digestibility. There was a negative linear and quadratic (p < 0.01) relation between CT concentration and total volatile fatty acid (VFA) production. Inclusion of 80 and 120 g CT/kg of substrate DM reduced (p < 0.001) branched-chain VFA production and acetate: propionate ratio and was lowest for CPI63767. A decrease in proteolytic activity as indirectly shown by a change in VFA composition favouring a shift towards propionate and reduction in branched-chain VFA production varied with type of CT and was highest for CPI63767. In conclusion, these results suggest that tannin polymer size is an important factor affecting in vitro CH4 production which may be linked to the CT interaction with dietary substrate or microbial cells.
Resumo:
Obesity prevalence is increasing. The management of this condition requires a detailed analysis of the global risk factors in order to develop personalised advice. This study is aimed to identify current dietary patterns and habits in Spanish population interested in personalised nutrition and investigate associations with weight status. Self-reported dietary and anthropometrical data from the Spanish participants in the Food4Me study, were used in a multidimensional exploratory analysis to define specific dietary profiles. Two opposing factors were obtained according to food groups’ intake: Factor 1 characterised by a more frequent consumption of traditionally considered unhealthy foods; and Factor 2, where the consumption of “Mediterranean diet” foods was prevalent. Factor 1 showed a direct relationship with BMI (β = 0.226; r2 = 0.259; p < 0.001), while the association with Factor 2 was inverse (β = −0.037; r2 = 0.230; p = 0.348). A total of four categories were defined (Prudent, Healthy, Western, and Compensatory) through classification of the sample in higher or lower adherence to each factor and combining the possibilities. Western and Compensatory dietary patterns, which were characterized by high-density foods consumption, showed positive associations with overweight prevalence. Further analysis showed that prevention of overweight must focus on limiting the intake of known deleterious foods rather than exclusively enhance healthy products.