41 resultados para Point interpolation method
Resumo:
The goal of this work is the numerical realization of the probe method suggested by Ikehata for the detection of an obstacle D in inverse scattering. The main idea of the method is to use probes in the form of point source (., z) with source point z to define an indicator function (I) over cap (z) which can be reconstructed from Cauchy data or far. eld data. The indicator function boolean AND (I) over cap (z) can be shown to blow off when the source point z tends to the boundary aD, and this behavior can be used to find D. To study the feasibility of the probe method we will use two equivalent formulations of the indicator function. We will carry out the numerical realization of the functional and show reconstructions of a sound-soft obstacle.
Resumo:
We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerical experiments validate these conclusions.
Resumo:
Dual Carrier Modulation (DCM) is currently used as the higher data rate modulation scheme for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the user’s experience of these products. In this paper, Log Likelihood Ratio (LLR) demapping method is used for the DCM demaper implemented in fixed point model. Channel State Information (CSI) aided scheme coupled with the band hopping information is used as the further technique to improve the DCM demapping performance. The receiver performance for the fixed point DCM is simulated in realistic multi-path environments.
Resumo:
This paper is concerned with solving numerically the Dirichlet boundary value problem for Laplace’s equation in a nonlocally perturbed half-plane. This problem arises in the simulation of classical unsteady water wave problems. The starting point for the numerical scheme is the boundary integral equation reformulation of this problem as an integral equation of the second kind on the real line in Preston et al. (2008, J. Int. Equ. Appl., 20, 121–152). We present a Nystr¨om method for numerical solution of this integral equation and show stability and convergence, and we present and analyse a numerical scheme for computing the Dirichlet-to-Neumann map, i.e., for deducing the instantaneous fluid surface velocity from the velocity potential on the surface, a key computational step in unsteady water wave simulations. In particular, we show that our numerical schemes are superalgebraically convergent if the fluid surface is infinitely smooth. The theoretical results are illustrated by numerical experiments.
Resumo:
A total of 133 samples (53 fermented unprocessed, 19 fermented processed. 62 urea-treated processed) of whole crop wheat (WCW) and 16 samples (five fermented unprocessed, six fermented processed, five urea-treated processed) of whole crop barley (WCB) were collected from commercial farms over two consecutive years (2003/2004 and 2004/2005). Disruption of the maize grains to increase starch availability was achieved at the point of harvest by processors fitted to the forage harvesters. All samples were subjected to laboratory analysis whilst 50 of the samples (24 front Year 1, 26 front Year 2 all WCW except four WCB in Year 2) were subjected to in vivo digestibility and energy value measurements using mature wether sheep. Urea-treated WCW had higher (P<0.05) pH, and dry matter (DM) and crude protein contents and lower concentrations of fermentation products than fermented WCW. Starch was generally lower in fermented, unprocessed WCW and no effect of crop maturity at harvest (as indicated by DM content) on starch concentrations was seen. Urea-treated WCW had higher (P<0.05) in vivo digestible organic matter contents in the DM (DOMD) in Year 1 although this was not recorded in Year 2. There was a close relationship between the digestibility values of organic matter and gross energy thus aiding the use of DOMD to predict metabolisable energy (ME) content. A wide range of ME values was observed (WCW. 8.7-11.8 MJ/kg DM; WCB 7.9-11.2 MJ/kg DM) with the overall ME/DOMD ratio (ME = 0.0156 DOMD) in line With Studies in other forages. There was no evidence that a separate ME/DOMD relationship was needed for WCB which is helpful for practical application. This ratio and other parameters were affected by year of harvest (P<0.05) highlighting the influence of environmental and Other undefined factors. The variability in the composition and nutritive value of WCW and WCB highlights the need for reliable and accurate evaluation methods to be available to assess the Value of these forages before they are included in diets for dairy cows. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Quality control on fruits requires reliable methods, able to assess with reasonable accuracy and possibly in a non-destructive way their physical and chemical characteristics. More specifically, a decreased firmness indicates the presence of damage or defects in the fruit or else that the fruit has exceeded its “best before date”, becoming unsuitable for consumption. In high-value exotic fruits, such as mangoes, where firmness cannot be easily measured from a simple observation of texture, colour changes and unevenness of fruits surface, the use of non-destructive techniques is highly recommendable. In particular, the application of Laser vibrometry, based on the Doppler effect, a non-contact technique sensitive to differences in displacements inferior to the nanometre, appears ideal for a possible on-line control on food. Previous results indicated that a phase shift can be in a repeatable way associated with the presence of damage on the fruit, whilst a decreased firmness results in significant differences in the displacement of the fruits under the same excitation signal. In this work, frequency ranges for quality control via the application of a sound chirp are suggested, based on the measurement of the signal coherence. The variations of the average vibration spectrum of a grid of points, or of point-by-point signal velocity allows the go-no go recognition of “firm” and “over-ripe” fruits, with notable success in the particular case of mangoes. The future exploitation of this work will include the application of this method to allow on-line control during conveyor belt distribution of fruits.
Resumo:
A method is presented for determining the time to first division of individual bacterial cells growing on agar media. Bacteria were inoculated onto agar-coated slides and viewed by phase-contrast microscopy. Digital images of the growing bacteria were captured at intervals and the time to first division estimated by calculating the "box area ratio". This is the area of the smallest rectangle that can be drawn around an object, divided by the area of the object itself. The box area ratios of cells were found to increase suddenly during growth at a time that correlated with cell division as estimated by visual inspection of the digital images. This was caused by a change in the orientation of the two daughter cells that occurred when sufficient flexibility arose at their point of attachment. This method was used successfully to generate lag time distributions for populations of Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa, but did not work with the coccoid organism Staphylococcus aureus. This method provides an objective measure of the time to first cell division, whilst automation of the data processing allows a large number of cells to be examined per experiment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two algorithms for finding the point on non-rational/rational Bezier curves of which the normal vector passes through a given external point are presented. The algorithms are based on Bezier curves generation algorithms of de Casteljau's algorithm for non-rational Bezier curve or Farin's recursion for rational Bezier curve, respectively. Orthogonal projections from the external point are used to guide the directional search used in the proposed iterative algorithms. Using Lyapunov's method, it is shown that each algorithm is able to converge to a local minimum for each case of non-rational/rational Bezier curves. It is also shown that on convergence the distance between the point on curves to the external point reaches a local minimum for both approaches. Illustrative examples are included to demonstrate the effectiveness of the proposed approaches.
Resumo:
A large and complex IT project may involve multiple organizations and be constrained within a temporal period. An organization is a system comprising of people, activities, processes, information, resources and goals. Understanding and modelling such a project and its interrelationship with relevant organizations are essential for organizational project planning. This paper introduces the problem articulation method (PAM) as a semiotic method for organizational infrastructure modelling. PAM offers a suite of techniques, which enables the articulation of the business, technical and organizational requirements, delivering an infrastructural framework to support the organization. It works by eliciting and formalizing (e. g. processes, activities, relationships, responsibilities, communications, resources, agents, dependencies and constraints) and mapping these abstractions to represent the manifestation of the "actual" organization. Many analysts forgo organizational modelling methods and use localized ad hoc and point solutions, but this is not amenable for organizational infrastructures modelling. A case study of the infrared atmospheric sounding interferometer (IASI) will be used to demonstrate the applicability of PAM, and to examine its relevancy and significance in dealing with the innovation and changes in the organizations.
Resumo:
This paper describes a new method for reconstructing 3D surface points and a wireframe on the surface of a freeform object using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed surface points are frontier points and the wireframe is a network of contour generators. Both of them are reconstructed by pairing apparent contours in the 2D images. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The unique pattern of the reconstructed points and contours may be used in 31) object recognition and measurement without computationally intensive full surface reconstruction. The results are obtained from both computer-generated and real objects. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.
Resumo:
The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas and performing a monochromatic radiation calculation for each point. In this presentation it is shown that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K/day due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such that they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide, and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K/day can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K/day for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.
Resumo:
The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models, and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas, and performing a pseudo-monochromatic radiation calculation for each point. In this paper it is first argued that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer pseudo-monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K d−1 due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K d−1 can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K d−1 for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.
Resumo:
Many well-established statistical methods in genetics were developed in a climate of severe constraints on computational power. Recent advances in simulation methodology now bring modern, flexible statistical methods within the reach of scientists having access to a desktop workstation. We illustrate the potential advantages now available by considering the problem of assessing departures from Hardy-Weinberg (HW) equilibrium. Several hypothesis tests of HW have been established, as well as a variety of point estimation methods for the parameter which measures departures from HW under the inbreeding model. We propose a computational, Bayesian method for assessing departures from HW, which has a number of important advantages over existing approaches. The method incorporates the effects-of uncertainty about the nuisance parameters--the allele frequencies--as well as the boundary constraints on f (which are functions of the nuisance parameters). Results are naturally presented visually, exploiting the graphics capabilities of modern computer environments to allow straightforward interpretation. Perhaps most importantly, the method is founded on a flexible, likelihood-based modelling framework, which can incorporate the inbreeding model if appropriate, but also allows the assumptions of the model to he investigated and, if necessary, relaxed. Under appropriate conditions, information can be shared across loci and, possibly, across populations, leading to more precise estimation. The advantages of the method are illustrated by application both to simulated data and to data analysed by alternative methods in the recent literature.
Resumo:
The coarse spacing of automatic rain gauges complicates near-real- time spatial analyses of precipitation. We test the possibility of improving such analyses by considering, in addition to the in situ measurements, the spatial covariance structure inferred from past observations with a denser network. To this end, a statistical reconstruction technique, reduced space optimal interpolation (RSOI), is applied over Switzerland, a region of complex topography. RSOI consists of two main parts. First, principal component analysis (PCA) is applied to obtain a reduced space representation of gridded high- resolution precipitation fields available for a multiyear calibration period in the past. Second, sparse real-time rain gauge observations are used to estimate the principal component scores and to reconstruct the precipitation field. In this way, climatological information at higher resolution than the near-real-time measurements is incorporated into the spatial analysis. PCA is found to efficiently reduce the dimensionality of the calibration fields, and RSOI is successful despite the difficulties associated with the statistical distribution of daily precipitation (skewness, dry days). Examples and a systematic evaluation show substantial added value over a simple interpolation technique that uses near-real-time observations only. The benefit is particularly strong for larger- scale precipitation and prominent topographic effects. Small-scale precipitation features are reconstructed at a skill comparable to that of the simple technique. Stratifying the reconstruction method by the types of weather type classifications yields little added skill. Apart from application in near real time, RSOI may also be valuable for enhancing instrumental precipitation analyses for the historic past when direct observations were sparse.