40 resultados para Poetic of the image
Resumo:
Within this paper modern techniques such as satellite image analysis and tools provided by geographic information systems (GIS.) are exploited in order to extend and improve existing techniques for mapping the spatial distribution of sediment transport processes. The processes of interest comprise mass movements such as solifluction, slope wash, dirty avalanches and rock- and boulder falls. They differ considerably in nature and therefore different approaches for the derivation of their spatial extent are required. A major challenge is addressing the differences between the comparably coarse resolution of the available satellite data (Landsat TM/ETM+, 30 in x 30 m) and the actual scale of sediment transport in this environment. A three-stepped approach has been developed which is based on the concept of Geomorphic Process Units (GPUs): parameterization, process area delineation and combination. Parameters include land cover from satellite data and digital elevation model derivatives. Process areas are identified using a hierarchical classification scheme utilizing thresholds and definition of topology. The approach has been developed for the Karkevagge in Sweden and could be successfully transferred to the Rabotsbekken catchment at Okstindan, Norway using similar input data. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Resumo:
In a recent investigation, Landsat TM and ETM+ data were used to simulate different resolutions of remotely-sensed images (from 30 to 1100 m) and to analyze the effect of resolution on a range of landscape metrics associated with spatial patterns of forest fragmentation in Chapare, Bolivia since the mid-1980s. Whereas most metrics were found to be highly dependent on pixel size, several fractal metrics (DLFD, MPFD, and AWMPFD) were apparently independent of image resolution, in contradiction with a sizeable body of literature indicating that fractal dimensions of natural objects depend strongly on image characteristics. The present re-analysis of the Chapare images, using two alternative algorithms routinely used for the evaluation of fractal dimensions, shows that the values of the box-counting and information fractal dimensions are systematically larger, sometimes by as much as 85%, than the "fractal" indices DLFD, MPFD, and AWMFD for the same images. In addition, the geometrical fractal features of the forest and non-forest patches in the Chapare region strongly depend on the resolution of images used in the analysis. The largest dependency on resolution occurs for the box-counting fractal dimension in the case of the non-forest patches in 1993, where the difference between the 30 and I 100 m-resolution images corresponds to 24% of the full theoretical range (1.0 to 2.0) of the mass fractal dimension. The observation that the indices DLFD, MPFD, and AWMPFD, unlike the classical fractal dimensions, appear relatively unaffected by resolution in the case of the Chapare images seems due essentially to the fact that these indices are based on a heuristic, "non-geometric" approach to fractals. Because of their lack of a foundation in fractal geometry, nothing guarantees that these indices will be resolution-independent in general. (C) 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
Resumo:
Why are humans musical? Why do people in all cultures sing or play instruments? Why do we appear to have specialized neurological apparatus for hearing and interpreting music as distinct from other sounds? And how does our musicality relate to language and to our evolutionary history? Anthropologists and archaeologists have paid little attention to the origin of music and musicality — far less than for either language or ‘art’. While art has been seen as an index of cognitive complexity and language as an essential tool of communication, music has suffered from our perception that it is an epiphenomenal ‘leisure activity’, and archaeologically inaccessible to boot. Nothing could be further from the truth, according to Steven Mithen; music is integral to human social life, he argues, and we can investigate its ancestry with the same rich range of analyses — neurological, physiological, ethnographic, linguistic, ethological and even archaeological — which have been deployed to study language. In The Singing Neanderthals Steven Mithen poses these questions and proposes a bold hypothesis to answer them. Mithen argues that musicality is a fundamental part of being human, that this capacity is of great antiquity, and that a holistic protolanguage of musical emotive expression predates language and was an essential precursor to it. This is an argument with implications which extend far beyond the mere origins of music itself into the very motives of human origins. Any argument of such range is bound to attract discussion and critique; we here present commentaries by archaeologists Clive Gamble and Iain Morley and linguists Alison Wray and Maggie Tallerman, along with Mithen's response to them. Whether right or wrong, Mithen has raised fascinating and important issues. And it adds a great deal of charm to the time-honoured, perhaps shopworn image of the Neanderthals shambling ineffectively through the pages of Pleistocene prehistory to imagine them humming, crooning or belting out a cappella harmonies as they went.
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Resumo:
Purpose. Hyperopic retinal defocus (blur) is thought to be a cause of myopia. If the retinal image of an object is not clearly focused, the resulting blur is thought to cause the continuing lengthening of the eyeball during development causing a permanent refractive error. Both lag of accommodation, especially for near targets, and greater variability in the accommodative response, have been suggested as causes of increased hyperopic retinal blur. Previous studies of lag of accommodation show variable findings. In comparison, greater variability in the accommodative response has been demonstrated in adults with late onset myopia but has not been tested in children. This study looked at the lag and variability of accommodation in children with early onset myopia. Methods. Twenty-one myopic and 18 emmetropic children were tested. Dynamic measures of accommodation and pupil size were made using eccentric photorefraction (Power Refractor) while children viewed targets set at three different accommodative demands (0.25, 2, and 4 D). Results. We found no difference in accommodative lag between groups. However, the accommodative response was more variable in the myopes than emmetropes when viewing both the near (4 D) and far (0.25 D) targets. Since pupil size and variability also varied, we analyzed the data to determine whether this could account for the inter-group differences in accommodation variability. Variation in these factors was not found to be sufficient to explain these differences. Changes in the accommodative response variability with target distance were similar to patterns reported previously in adult emmetropes and late onset myopes. Conclusions. Children with early onset myopia demonstrate greater accommodative variability than emmetropic children, and have similar patterns of response to adult late onset myopes. This increased variability could result in an increase in retinal blur for both near and far targets. The role of accommodative variability in the etiology of myopia is discussed.
Resumo:
This paper is addressed to the numerical solving of the rendering equation in realistic image creation. The rendering equation is integral equation describing the light propagation in a scene accordingly to a given illumination model. The used illumination model determines the kernel of the equation under consideration. Nowadays, widely used are the Monte Carlo methods for solving the rendering equation in order to create photorealistic images. In this work we consider the Monte Carlo solving of the rendering equation in the context of the parallel sampling scheme for hemisphere. Our aim is to apply this sampling scheme to stratified Monte Carlo integration method for parallel solving of the rendering equation. The domain for integration of the rendering equation is a hemisphere. We divide the hemispherical domain into a number of equal sub-domains of orthogonal spherical triangles. This domain partitioning allows to solve the rendering equation in parallel. It is known that the Neumann series represent the solution of the integral equation as a infinity sum of integrals. We approximate this sum with a desired truncation error (systematic error) receiving the fixed number of iteration. Then the rendering equation is solved iteratively using Monte Carlo approach. At each iteration we solve multi-dimensional integrals using uniform hemisphere partitioning scheme. An estimate of the rate of convergence is obtained using the stratified Monte Carlo method. This domain partitioning allows easy parallel realization and leads to convergence improvement of the Monte Carlo method. The high performance and Grid computing of the corresponding Monte Carlo scheme are discussed.
Resumo:
This paper describes the crowd image analysis challenge that forms part of the PETS 2009 workshop. The aim of this challenge is to use new or existing systems for i) crowd count and density estimation, ii) tracking of individual(s) within a crowd, and iii) detection of separate flows and specific crowd events, in a real-world environment. The dataset scenarios were filmed from multiple cameras and involve multiple actors.
Resumo:
This paper is turned to the advanced Monte Carlo methods for realistic image creation. It offers a new stratified approach for solving the rendering equation. We consider the numerical solution of the rendering equation by separation of integration domain. The hemispherical integration domain is symmetrically separated into 16 parts. First 9 sub-domains are equal size of orthogonal spherical triangles. They are symmetric each to other and grouped with a common vertex around the normal vector to the surface. The hemispherical integration domain is completed with more 8 sub-domains of equal size spherical quadrangles, also symmetric each to other. All sub-domains have fixed vertices and computable parameters. The bijections of unit square into an orthogonal spherical triangle and into a spherical quadrangle are derived and used to generate sampling points. Then, the symmetric sampling scheme is applied to generate the sampling points distributed over the hemispherical integration domain. The necessary transformations are made and the stratified Monte Carlo estimator is presented. The rate of convergence is obtained and one can see that the algorithm is of super-convergent type.
Resumo:
This paper is directed to the advanced parallel Quasi Monte Carlo (QMC) methods for realistic image synthesis. We propose and consider a new QMC approach for solving the rendering equation with uniform separation. First, we apply the symmetry property for uniform separation of the hemispherical integration domain into 24 equal sub-domains of solid angles, subtended by orthogonal spherical triangles with fixed vertices and computable parameters. Uniform separation allows to apply parallel sampling scheme for numerical integration. Finally, we apply the stratified QMC integration method for solving the rendering equation. The superiority our QMC approach is proved.
Resumo:
This paper presents the results of the crowd image analysis challenge, as part of the PETS 2009 workshop. The evaluation is carried out using a selection of the metrics available in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The evaluation highlights the strengths of the authors’ systems in areas such as precision, accuracy and robustness.
Resumo:
Video:35 mins, 2006. The video shows a group of performers in a studio and seminar situation. Individually addressing the camera they offer personal views and experiences of their own art production in relation to the institution, while reflecting on their role as teachers. The performance scripts mainly originate from a series of real interviews with a diverse group of artist teachers, who emphasise the collaborative, performative and subversive nature of teaching. These views may seems symptomatic for contemporary art practices, but are ultimately antagonistic to the ongoing commodification of the system of art education.
Resumo:
This article extends the traditions of style-based criticism through an encounter with the insights that can be gained from engaging with filmmakers at work. By bringing into relationship two things normally thought of as separate: production history and disinterested critical analysis, the discussion aims to extend the subjects which criticism can appreciate as well as providing some insights on the creative process. Drawing on close analysis, on observations made during fieldwork and on access to earlier cuts of the film, this article looks at a range of interrelated decision-making anchored by the reading of a particular sequence. The article examines changes the film underwent in the different stages of production, and some of the inventions deployed to ensure key themes and ideas remained in play, as other elements changed. It draws conclusions which reveal perspectives on the filmmaking process, on collaboration, and on the creative response to material realities. The article reveals elements of the complexity of the process of the construction of image and soundtrack, and extends the range of filmmakers’ choices which are part of a critical dialogue. Has a relationship to ‘Sleeping with half open eyes: dreams and realities in The Cry of the Owl’, Movie: A Journal of Film Criticism, 1, (2010) which provides a broader interpretative context for the enquiry.