53 resultados para Platinum nanoparticle
Resumo:
Nanometer metal particles of tailored size (3-5 nm) and composition prepared via inverse microemulsion were encapsulated by ultrathin coatings (<2.5 nm) of inorganic porous aerogels covered with surface -OH groups. These composite materials formed metastable colloids in solvent(s), and the organic surfactant molecules were subsequently removed without leading to aggregation (the ethanolic colloid solution was shown to be stable against flocculation for at least weeks). We demonstrate that the totally inorganic-based composite colloids, after the removal of surfactant, can be anchored to conventional solid supports (gamma-alumina, carbons) upon mixing. Application of a high temperature resulted in the formation of strong covalent linkages between the colloids and the support because of the condensation of surface groups at the interface. Detailed characterizations (X-ray diffraction (XRD), pore analysis, transmission electron microscopy (TEM), CO chemisorption) and catalytic testing (butane combustion) showed that there was no significant metal aggregation from the fine metal particles individually coated with porous aerogel oxide. Most of these metal sites on the coated nanoparticles with and without support are fully accessible by small molecules hence giving extremely active metal catalysts. Thus, the product and technology described may be suitable to synthesize these precursor entities of defined metal sizes (as inks) for wash coat/impregnation applications in catalysis. The advantages of developing inorganic nanocomposite chemical precursors are also discussed.
Resumo:
The molecular structure of trans-[PtCl(CCPh)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are monoclinic, space group P21, with a= 12.359(3), b= 13.015(3), c= 9.031(2)Å, β= 101.65(2)°, and Z= 2. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.046 for 1 877 diffractometric intensity data. The crystals contain discrete molecules in which the platinum coordination is square planar. The phenylethynyl group is non-linear, with a Pt–CC angle of 163(2)°. Selected bond lengths are Pt–Cl 2.407(5) and Pt–C 1.98(2)Å. The structural trans influences of CCPh, CHCH2, and CH2SiMe3 ligands in platinum(II) complexes are compared; there is only a small dependence on hybridization at the ligating carbon atom.
Resumo:
The molecular structure of trans-[PtCl(CHCH2)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are orthorhombic, space group Pbcn, with a= 10.686(2), b= 13.832(4), c= 16.129(4)Å, and Z= 4. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.044 for 1 420 diffractometric intensity data. The crystals contain discrete molecules in which the platinum co-ordination is square planar. The Pt–Cl bond vector coincides with a crystallographic diad axis about which the atoms of the vinyl group are disordered. Selected bond lengths (Å) are Pt–Cl 2.398(4), Pt–P 2.295(3), and Pt–C 2.03(2). The Pt–CC angle is 127(2)°. From a survey of the available structural data it is concluded that there is little, if any, back donation from platinum to carbon in platinum–alkenyl linkages.
Resumo:
The compounds trans-[PtBr{C(C10H15)CH2}(PEt3)2](1)(C10H15= adamant-1-yl), trans-[MBr{C(C10H7)CMe2}(PEt3)2][M = Pd (2) or Pt (3); C10H7= naphth-1-yl], and trans-[MBr{C(Ph)CMe2}(PEt3)2][M = Pd (4) or Pt (5)] have been prepared from Grignard [for (2) and (3)] or lithium reagents [for (1), (4), and (5)] and appropriate dichlorobis(phosphine)metal derivatives. Full single-crystal X-ray data are reported for (1) and (3), and reveal unusually long Pt–C(sp2) bonds. Insertion reactions into these M–C bonds occur with MeNC [for (1), (3), and (5)], and with CO [for (1) and (3)]; the latter, the first reported insertion into a Pt–C(sp2) bond, occurs under mild conditions as expected for the abnormally long M–C bonds.
Resumo:
The synthesis of 2D hexagonal mesoporous platinum films with biaxial, in-plane pore alignment is demonstrated by electrodeposition through an aligned lyotropic liquid crystal templating phase. Shear force is used to align a hexagonal lyotropic liquid crystalline templating phase of an inexpensive and a commercially available surfactant, C16EO10, at the surface of an electrode. Electrodeposition and subsequent characterisation of the films produced shows that the orientation and alignment of the phase is transferred to the deposited material. Transmission electron microscopy confirms the expected nanostructure of the films, whilst transmission and grazing incidence small angle X-ray scattering analysis confirms biaxial, in plane alignment of the pore structure. In addition further electrochemical studies in dilute sulfuric acid and methanol show that the pores are accessible to electrolyte solution as indicated by a large current flow; the modified electrode therefore has a high surface area, that catalyses methanol oxidation, and the pores have a very large aspect ratio (of theoretical maximum 2 × 105). Films with such aligned mesoporosity will advance the field of nanotechnology where the control of pore structure is paramount. The method reported is sufficiently generic to be used to control the structure and order of many materials, thus increasing the potential for the development of a wide range of novel electronic and optical devices.
Resumo:
Platinum is one of the most common coatings used to optimize mirror reflectivity in soft X-ray beamlines. Normal operation results in optics contamination by carbon-based molecules present in the residual vacuum of the beamlines. The reflectivity reduction induced by a carbon layer at the mirror surface is a major problem in synchrotron radiation sources. A time-dependent photoelectron spectroscopy study of the chemical reactions which take place at the Pt(111) surface under operating conditions is presented. It is shown that the carbon contamination layer growth can be stopped and reversed by low partial pressures of oxygen for optics operated in intense photon beams at liquidnitrogen temperature. For mirrors operated at room temperature the carbon contamination observed for equivalent partial pressures of CO is reduced and the effects of oxygen are observed on a long time scale.
Resumo:
Direct electrochemical templating is carried out using a thin layer of a self-assembled diamond phase (QIID) of phytantriol to create a platinum film with a novel nanostructure. Small-angle X-ray scattering shows that the nanostructured platinum films are asymmetrically templated and exhibit “single diamond” morphology with Fd3m symmetry.
Resumo:
The increasing use of nanoparticles in the pharmaceutical industry is generating concomitant interest in developing nanomaterials that can rapidly penetrate into, and permeate through, biological membranes to facilitate drug delivery and improve the bioavailability of active pharmaceutical ingredients. Here, we demonstrate that the permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). Nanoparticle diffusion was assessed using two independent techniques; Nanoparticle Tracking Analysis, and fluorescence microscopy. Our results show that poly(2-ethyl-2-oxazoline) and poly(ethylene glycol) have comparable abilities to enhance diffusion of silica nanoparticles in mucin dispersions and through the gastric mucosa. These findings provide a new strategy in the design of nanomedicines, by surface modification or nanoparticle core construction, for enhanced transmucosal drug delivery.
Resumo:
Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1–2 microns thick featuring 3D-periodic ‘single diamond’ morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker platinum films are grown, they also show increased orientational disorder. These results suggest that polydomain QII samples display a region of uniaxial orientation at the lipid/substrate interface up to approximately 2.8 ± 0.3 μm away from the solid surface. Our approach gives previously unavailable information on the arrangement of cubic phases at solid interfaces, which is important for many applications of QII phases. Most significantly, we have produced a previously unreported class of oriented nanomaterial, with potential applications including metamaterials and lithographic masks.
Resumo:
In this study we report detailed information on the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles formed from self-assembly in aqueous solutions upon increase in temperature. NMR spectroscopy, light scattering and small-angle neutron scattering (SANS) were used to monitor different stages of nanoparticle formation as a function of temperature, providing insight into the fundamental processes involved. The presence of PEG in a copolymer structure significantly affects the formation of nanoparticles, making their transition to occur over a broader temperature range. The crucial parameter that controls the transition is the ratio of PEG/PNIPAM. For pure PNIPAM, the transition is sharp; the higher the PEG/PNIPAM ratio results in a broader transition. This behavior is explained by different mechanisms of PNIPAM block incorporation during nanoparticle formation at different PEG/PNIPAM ratios. Contrast variation experiments using SANS show that the structure of nanoparticles above cloud point temperatures for PNIPAM-b-PEG-b-PNIPAM copolymers is drastically different from the structure of PNIPAM mesoglobules. In contrast with pure PNIPAM mesoglobules, where solid-like particles and chain network with a mesh size of 1-3 nm are present; nanoparticles formed from PNIPAM-b-PEG-b-PNIPAM copolymers have non-uniform structure with “frozen” areas interconnected by single chains in Gaussian conformation. SANS data with deuterated “invisible” PEG blocks imply that PEG is uniformly distributed inside of a nanoparticle. It is kinetically flexible PEG blocks which affect the nanoparticle formation by prevention of PNIPAM microphase separation.
Resumo:
Using a focused ion beam (FIB) instrument, electron-transparent samples (termed foils) have been cut from the naturally weathered surfaces of perthitic alkali feldspars recovered from soils overlying the Shap granite, northwest England. Characterization of these foils by transmission electron microscopy (TEM) has enabled determination of the crystallinity and chemical composition of near-surface regions of the feldspar and an assessment of the influence of intragranular microtextures on the microtopography of grain surfaces and development of etch pits. Damage accompanying implantation of the 30 kV Ga+ ions used for imaging and deposition of protective platinum prior to ion milling creates amorphous layers beneath outer grain surfaces, but can be overcome by coating grains with > 85 nm of gold before FIB work. The sidewalls of the foil and feldspar surrounding original voids are also partially amorphized during later stages of ion milling. No evidence was found for the presence of amorphous or crystalline weathering products or amorphous "leached layers" immediately beneath outer grain surfaces. The absence of a leached layer indicates that chemical weathering of feldspar in the Shap soils is stoichiometric, or if non-stoichiometric, either the layer is too thin to resolve by the TEM techniques used (i.e., <=similar to 2.5 nm) or an insufficient proportion of ions have been leached from near-surface regions so that feldspar crystallinity is maintained. No evidence was found for any difference in the mechanisms of weathering where a microbial filament rests on the feldspar surface. Sub-micrometer-sized steps on the grain surface have formed where subgrains and exsolution lamellae have influenced the propagation of fractures during physical weathering, whereas finer scale corrugations form due to compositional or strain-related differences in dissolution rates of albite platelets and enclosing tweed orthoclase. With progressive weathering, etch pits that initiated at the grain surface extend into grain interiors as etch tubes by exploiting preexisting networks of nanopores that formed during the igneous history of the grain. The combination of FIB and TEM techniques is an especially powerful way of exploring mechanisms of weathering within the "internal zone" beneath outer grain surfaces, but results must be interpreted with caution owing to the ease with which artifacts can be created by the high-energy ion and electron beams used in the preparation and characterization of the foils.
Resumo:
In a vault on the outskirts of Paris, a cylinder of platinum-iridium sits in a safe under three layers of glass. It is the kilogram, kept by the Bureau International des Poids et Mesures (BIPM), which is the international home of metrology. Metrology is the science of measurement, and it is of fundamental importance to us all. It is essential for trade, commerce, navigation, transport, communication, surveying, engineering, and construction. It is essential for medical diagnosis and treatment, health and safety, food and consumer protection, and for preserving the environment—e.g., measuring ozone in the atmosphere. Many of these applications are of particular relevance to chemistry and thus to IUPAC. In all these activities we need to make measurements reliably—to an appropriate and known level of uncertainty. The financial implications of metrology are enormous. In the United States, for example, some 15% of the gross domestic product is spent on healthcare, involving reliable quantitative measurements for both diagnosis and treatment.
Resumo:
The present study explores for the first time, the effectiveness of photocatalytic oxidation of. humic acid (HA) in the increasingly important highly saline water. TiO2 (Degussa P25), TiO2 (Anatase), TiO2 (Rutile), TiO2 (Mesoporous) and ZnO dispersions were used as catalysts employing a medium pressure mercury lamp. The effect of platinum loading on P25 and zinc oxide was also investigated. The zinc oxide with 0.3% platinum loading was the most efficient catalyst. The preferred medium for the degradation of HA using ZnO is alkaline, whereas for TiO2 it is acidic. In addition, a comparative study of HA decomposition in artificial seawater (ASW) and natural seawater (NSW) is reported, and the surface areas and band gaps of the catalysts employed were also determined. A spectrophotometric method was used to estimate the extent of degradation of HA. (C) 2003 Elsevier Science B.V. All rights reserved.