150 resultados para Platelet parameters
Resumo:
Genetic parameters and breeding values for dairy cow fertility were estimated from 62 443 lactation records. Two-trait analysis of fertility and milk yield was investigated as a method to estimate fertility breeding values when culling or selection based on milk yield in early lactation determines presence or absence of fertility observations in later lactations. Fertility traits were calving interval, intervals from calving to first service, calving to conception and first to last service, conception success to first service and number of services per conception. Milk production traits were 305-day milk, fat and protein yield. For fertility traits, range of estimates of heritability (h(2)) was 0.012 to 0.028 and of permanent environmental variance (c(2)) was 0.016 to 0.032. Genetic correlations (r(g)) among fertility traits were generally high ( > 0.70). Genetic correlations of fertility with milk production traits were unfavourable (range -0.11 to 0.46). Single and two-trait analyses of fertility were compared using the same data set. The estimates of h(2) and c(2) were similar for two types of analyses. However, there were differences between estimated breeding values and rankings for the same trait from single versus multi-trait analyses. The range for rank correlation was 0.69-0.83 for all animals in the pedigree and 0.89-0.96 for sires with more than 25 daughters. As single-trait method is biased due to selection on milk yield, a multi-trait evaluation of fertility with milk yield is recommended. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Maize silage nutritive quality is routinely determined by near infrared reflectance spectroscopy (NIRS). However, little is known about the impact of sample preparation on the accuracy of the calibration to predict biological traits. A sample population of 48 maize silages representing a wide range of physiological maturities was used in a study to determine the impact of different sample preparation procedures (i.e., drying regimes; the presence or absence of residual moisture; the degree of particle comminution) on resultant NIR prediction statistics. All silages were scanned using a total of 12 combinations of sample pre-treatments. Each sample preparation combination was subjected to three multivariate regression techniques to give a total of 36 predictions per biological trait. Increased sample preparations procedure, relative to scanning the unprocessed whole plant (WP) material, always resulted in a numerical minimisation of model statistics. However, the ability of each of the treatments to significantly minimise the model statistics differed. Particle comminution was the most important factor, oven-drying regime was intermediate, and residual moisture presence was the least important. Models to predict various biological parameters of maize silage will be improved if material is subjected to a high degree of particle comminution (i.e., having been passed through a 1 mm screen) and developed on plant material previously dried at 60 degrees C. The extra effort in terms of time and cost required to remove sample residual moisture cannot be justified. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The microbial fermentability, ruminal degradability and digestibility of 48 maize silages were determined using in vitro gas production (GP), in situ degradability and in vitro digestibility procedures. The silages were produced from forage maize harvested throughout the summer of 1998, and represent a wide range of physiological maturities. Large variations among samples were observed for all biological parameters, with the exception of in vitro digestibility and the asymptote of in vitro GP. The potential of near infrared reflectance spectroscopy (NIRS) to predict the biological parameters measured was determined by regression of the biological data against the respective spectral profile. NIRS demonstrated only a moderate ability (R-2 > 0.60-0.80) to predict in vitro digestibility, modelled kinetics of gas production (excluding the asymptote of gas production) and the modelled ruminally soluble dry matter (DM) fraction. Calibration statistics for remaining biological parameters were unacceptably poor (R-2 = 0.60). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Land use change with accompanying major modifications to the vegetation cover is widespread in the tropics, due to increasing demands for agricultural land, and may have significant impacts on the climate. This study investigates (1) the influence of vegetation on the local climate in the tropics; (2) how that influence varies from region to region; and (3) how the sensitivity of the local climate to vegetation, and hence land use change, depends on the hydraulic characteristics of the soil. A series of idealised experiments with the Hadley Centre atmospheric model, HadAM3, are described in which the influence of vegetation in the tropics is assessed by comparing the results of integrations with and without tropical vegetation. The sensitivity of the results to the soil characteristics is then explored by repeating the experiments with a differing, but equally valid, description of soil hydraulic parameters. The results have shown that vegetation has a significant moderating effect on the climate throughout the tropics by cooling the surface through enhanced latent heat fluxes. The influence of vegetation is, however, seasonally dependent, with much greater impacts during the dry season when the availability of surface moisture is limited. Furthermore, there are significant regional variations both in terms of the magnitude of the cooling and in the response of the precipitation. Not all regions show a feedback of vegetation on the local precipitation; this result has been related both to vegetation type and to the prevailing meteorological conditions. An important finding has been the sensitivity of the results to the specification of the soil hydraulic parameters. The introduction of more freely draining soils has changed the soil-moisture contents of the control, vegetated system and has reduced, significantly, the climate sensitivity to vegetation and by implication, land use change. Changes to the soil parameters have also had an impact on the soil hydrology and its interaction with vegetation, by altering the partitioning between fast and slow runoff processes. These results raise important questions about the representation of highly heterogeneous soil characteristics in climate models, as well as the potential influence of land use change on the soil characteristics themselves.
Resumo:
Cows in severe negative energy balance after calving have reduced fertility, mediated by metabolic signals influencing the reproductive system. We hypothesised that transition diet could alter metabolic status after calving, and thus influence fertility. Multiparous dairy cows were assigned to four transition groups 6 weeks pre-calving and fed: (a) basal control diet (n = 10); (b) basal diet plus barley (STARCH, n = 10); (c) basal diet plus Soypass (high protein, HiPROT, n = 11); or (d) no transition management (NoTRANS, n = 9). All cows received the same lactational diet. Blood samples, body weights and condition scores (BCS) were collected weekly. Fertility parameters were monitored using milk progesterone profiles and were not affected by transition diet. Data from all cows were then combined and analysed according to the pattern of post-partum ovarian activity. Cows with low progesterone profiles had significantly lower insulin-like growth factor-I (IGF-I) and insulin concentrations accompanied by reduced dry matter intakes (DMIs), BCS and body weight. Cows with prolonged luteal activity (PLA) were older and tended to have lower IGF-I. Analysis based on the calving to conception interval revealed that cows which failed to conceive (9/40) also had reduced IGF-I, BCS and body weight. Fertility was, therefore, decreased in cows which were in poor metabolic status following calving. This was reflected in reduced circulating IGF-I concentrations and compromised both ovarian activity and conception. There was little effect of the transition diets on these parameters. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
Soluble factors such as ADP and thromboxane (TX) A(2) that are secreted or released by platelets at sites of tissue injury, mediate autocrine and paracrine regulation of platelet function, resulting in rapid localised thrombus formation. The suppression of platelet function, particularly through targeting such secondary regulatory mechanisms, that serve to 'fine-tune' the platelet response, has proven effective in the prevention of inappropriate platelet activation that results in thrombosis. The most commonly used anti-platelet approaches (ADP receptor antagonism or inhibition of TXA(2) synthesis), however, lack efficacy in many patients, suggesting the existence of additional uncharacterised mechanisms for the regulation of platelet function. Recent data, which form a focus of this review, have identified peripheral tachykinin peptide family members, such as substance P and the newly identified endokinins, as physiologically important positive feedback regulators of platelet function. The actions of tachykinins that are released from platelets during activation are mediated by the neurokinin-1 receptor. Initial analysis of the role of this receptor in platelet thrombus formation, and thrombosis in the mouse, indicate this to be a promising new target for the development of anti-thrombotic drugs. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Platelet response to activation varies widely between individuals but shows interindividual consistency and strong heritability. The genetic basis of this variation has not been properly explored. We therefore systematically measured the effect on function of sequence variation in 97 candidate genes in the collagen and adenosine-diphosphate (ADP) signaling pathways. Resequencing of the genes in 48 European DNA samples nearly doubled the number of known single nucleotide polymorphisms (SNPs) and informed the selection of 1327 SNPs for genotyping in 500 healthy Northern European subjects with known platelet responses to collagen-related peptide (CRP-XL) and ADP. This identified 17 novel associations with platelet function (P < .005) accounting for approximately 46% of the variation in response. Further investigations with platelets of known genotype explored the mechanisms behind some of the associations. SNPs in PEAR1 associated with increased platelet response to CRP-XL and increased PEAR1 protein expression after platelet degranulation. The minor allele of a 3' untranslated region (UTR) SNP (rs2769668) in VAV3 was associated with higher protein expression (P = .03) and increased P-selectin exposure after ADP activation (P = .004). Furthermore the minor allele of the intronic SNP rs17786144 in ITPR1 modified Ca2+ levels after activation with ADP (P < .004). These data provide novel insights into key hubs within platelet signaling networks.
Resumo:
Platelet endothelial cell adhesion molecule-1 (PECAM-1) inhibits platelet response to collagen and may also inhibit two other major platelet agonists ADP and thrombin although this has been less well explored. We hypothesized that the combined effect of inhibiting these three platelet activating pathways may act to significantly inhibit thrombus formation. We demonstrate a negative relationship between PECAM-1 surface expression and platelet response to cross-linked collagen related peptide (CRP-XL) and ADP, and an inhibitory effect of PECAM-1 clustering on platelet response to CRP-XL, ADP and thrombin. This combined inhibition of multiple signaling pathways results in a marked reduction in thrombus formation. (C) 2009 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
PopABC is a computer package for inferring the pattern of demographic divergence of closely related populations and species. The software performs coalescent simulation in the framework of approximate Bayesian computation (ABC). PopABC can also be used to perform Bayesian model choice to discriminate between different demographic scenarios. The program can be used either for research or for education and teaching purposes.
Resumo:
In this study, we demonstrate the suitability of the vertebrate Danio rerio (zebrafish) for functional screening of novel platelet genes in vivo by reverse genetics. Comparative transcript analysis of platelets and their precursor cell, the megakaryocyte, together with nucleated blood cell elements, endothelial cells, and erythroblasts, identified novel platelet membrane proteins with hitherto unknown roles in thrombus formation. We determined the phenotype induced by antisense morpholino oligonucleotide (MO)–based knockdown of 5 of these genes in a laser-induced arterial thrombosis model. To validate the model, the genes for platelet glycoprotein (GP) IIb and the coagulation protein factor VIII were targeted. MO-injected fish showed normal thrombus initiation but severely impaired thrombus growth, consistent with the mouse knockout phenotypes, and concomitant knockdown of both resulted in spontaneous bleeding. Knockdown of 4 of the 5 novel platelet proteins altered arterial thrombosis, as demonstrated by modified kinetics of thrombus initiation and/or development. We identified a putative role for BAMBI and LRRC32 in promotion and DCBLD2 and ESAM in inhibition of thrombus formation. We conclude that phenotypic analysis of MO-injected zebrafish is a fast and powerful method for initial screening of novel platelet proteins for function in thrombosis.
Resumo:
Mean platelet volume (MPV) and platelet count (PLT) are highly heritable and tightly regulated traits. We performed a genome-wide association study for MPV and identified one SNP, rs342293, as having highly significant and reproducible association with MPV (per-G allele effect 0.016 +/- 0.001 log fL; P < 1.08 x 10(-24)) and PLT (per-G effect -4.55 +/- 0.80 10(9)/L; P < 7.19 x 10(-8)) in 8586 healthy subjects. Whole-genome expression analysis in the 1-MB region showed a significant association with platelet transcript levels for PIK3CG (n = 35; P = .047). The G allele at rs342293 was also associated with decreased binding of annexin V to platelets activated with collagen-related peptide (n = 84; P = .003). The region 7q22.3 identifies the first QTL influencing platelet volume, counts, and function in healthy subjects. Notably, the association signal maps to a chromosome region implicated in myeloid malignancies, indicating this site as an important regulatory site for hematopoiesis. The identification of loci regulating MPV by this and other studies will increase our insight in the processes of megakaryopoiesis and proplatelet formation, and it may aid the identification of genes that are somatically mutated in essential thrombocytosis. (Blood. 2009; 113: 3831-3837)
Resumo:
Platelets have long been recognized to be of central importance in haemostasis, but their participation in pathological conditions such as thrombosis, atherosclerosis and inflammation is now also well established. The platelet has therefore become a key target in therapies to combat cardiovascular disease. Anti-platelet therapies are used widely, but current approaches lack efficacy in a proportion of patients, and are associated with side effects including problem bleeding. In the last decade, substantial progress has been made in understanding the regulation of platelet function, including the characterization of new ligands, platelet-specific receptors and cell signalling pathways. It is anticipated this progress will impact positively on the future innovations towards more effective and safer anti-platelet agents. In this review, the mechanisms of platelet regulation and current anti-platelet therapies are introduced, and strong, and some more speculative, potential candidate target molecules for future anti-platelet drug development are discussed.
Resumo:
The important role of platelets in the development of arterial thrombosis and cardiovascular disease is well established. Current treatments for arterial thrombosis include anti-platelet agents such as aspirin, thienopyridines and glycoprotein IIb-IIIa inhibitors. Despite these drugs being effective there remains a substantial unmet clinical demand for more effective therapeutic approaches, which may reflect the existence of alternative underlying regulatory mechanisms to those already targeted. Recent publications have demonstrated a key role for tachykinins in the positive feedback regulation of platelet aggregation and thrombus formation. The pro-thrombotic effects of tachykinins on platelets are mediated through the neurokinin 1 receptor, which may therefore offer a novel therapeutic drug target in the prevention and the treatment of arterial thrombosis.