47 resultados para Plant-pathogenic bacteria
Resumo:
Objectives: The aim of this study was to determine and compare the proteomes of three triclosan-resistant mutants of Salmonella enterica serovar Typhimurium in order to identify proteins involved in triclosan resistance. Methods: The proteomes of three distinct but isogenic triclosan-resistant mutants were determined using two-dimensional liquid chromatography mass separation. Bioinformatics was then used to identify and quantify tryptic peptides in order to determine protein expression. Results: Proteomic analysis of the triclosan-resistant mutants identified a common set of proteins involved in production of pyruvate or fatty acid with differential expression in all mutants, but also demonstrated specific patterns of expression associated with each phenotype. Conclusions: These data show that triclosan resistance can occur via distinct pathways in Salmonella, and demonstrate a novel triclosan resistance network that is likely to have relevance to other pathogenic bacteria subject to triclosan exposure and may provide new targets for development of antimicrobial agents.
Resumo:
Background: Microarray based comparative genomic hybridisation (CGH) experiments have been used to study numerous biological problems including understanding genome plasticity in pathogenic bacteria. Typically such experiments produce large data sets that are difficult for biologists to handle. Although there are some programmes available for interpretation of bacterial transcriptomics data and CGH microarray data for looking at genetic stability in oncogenes, there are none specifically to understand the mosaic nature of bacterial genomes. Consequently a bottle neck still persists in accurate processing and mathematical analysis of these data. To address this shortfall we have produced a simple and robust CGH microarray data analysis process that may be automated in the future to understand bacterial genomic diversity. Results: The process involves five steps: cleaning, normalisation, estimating gene presence and absence or divergence, validation, and analysis of data from test against three reference strains simultaneously. Each stage of the process is described and we have compared a number of methods available for characterising bacterial genomic diversity, for calculating the cut-off between gene presence and absence or divergence, and shown that a simple dynamic approach using a kernel density estimator performed better than both established, as well as a more sophisticated mixture modelling technique. We have also shown that current methods commonly used for CGH microarray analysis in tumour and cancer cell lines are not appropriate for analysing our data. Conclusion: After carrying out the analysis and validation for three sequenced Escherichia coli strains, CGH microarray data from 19 E. coli O157 pathogenic test strains were used to demonstrate the benefits of applying this simple and robust process to CGH microarray studies using bacterial genomes.
Resumo:
The aim of this study was to investigate the antimicrobial properties of fifteen selected strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera against Gram-positive and Gram-negative pathogenic bacteria. In vitro antibacterial activity was initially investigated by an agar spot method. Results from the agar spot test showed that most of the selected strains were able to produce active compounds on solid media with antagonistic properties against Salmonella Typhimurium, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and Clostridium difficile. These results were also confirmed when cell-free culture supernatants (CFCS) from the putative probiotics were used in an agar well diffusion assay. Neutralization of the culture supernatants with alkali reduced the antagonistic effects. These experiments are able to confirm the capacity of potential probiotics to inhibit selected pathogens. One of the main inhibitory mechanisms may result from the production of organic acids from glucose fermentation and consequent lowering of culture pH. This observation was confirmed when the profile of organic acids was analysed demonstrating that lactic and acetic acid were the principal end products of probiotic metabolism. Furthermore, the assessment of the haemolytic activity and the susceptibility of the strains to the most commonly used antimicrobials, considered as basic safety aspects, were also studied. The observed antimicrobial activity was mainly genus-specific, additionally significant differences could be observed among species.
Resumo:
We have performed microarray hybridization studies on 40 clinical isolates from 12 common serovars within Salmonella enterica subspecies I to identify the conserved chromosomal gene pool. We were able to separate the core invariant portion of the genome by a novel mathematical approach using a decision tree based on genes ranked by increasing variance. All genes within the core component were confirmed using available sequence and microarray information for S. enterica subspecies I strains. The majority of genes within the core component had conserved homologues in Escherichia coli K-12 strain MG1655. However, many genes present in the conserved set which were absent or highly divergent in K-12 had close homologues in pathogenic bacteria such as Shigella flexneri and Pseudomonas aeruginosa. Genes within previously established virulence determinants such as SPI1 to SPI5 were conserved. In addition several genes within SPI6, all of SPI9, and three fimbrial operons (fim, bcf, and stb) were conserved within all S. enterica strains included in this study. Although many phage and insertion sequence elements were missing from the core component, approximately half the pseudogenes present in S. enterica serovar Typhi were conserved. Furthermore, approximately half the genes conserved in the core set encoded hypothetical proteins. Separation of the core and variant gene sets within S. enterica subspecies I has offered fundamental biological insight into the genetic basis of phenotypic similarity and diversity across S. enterica subspecies I and shown how the core genome of these pathogens differs from the closely related E. coli K-12 laboratory strain.
Resumo:
The genus Cercospora contains numerous important plant pathogenic fungi from a diverse range of hosts. Most species of Cercospora are known only from their morphological characters in vivo. Although the genus contains more than 5 000 names, very few cultures and associated DNA sequence data are available. In this study, 360 Cercospora isolates, obtained from 161 host species, 49 host families and 39 countries, were used to compile a molecular phylogeny. Partial sequences were derived from the internal transcribed spacer regions and intervening 5.8S nrRNA, actin, calmodulin, histone H3 and translation elongation factor 1-alpha genes. The resulting phylogenetic clades were evaluated for application of existing species names and five novel species are introduced. Eleven species are epi-, lecto- or neotypified in this study. Although existing species names were available for several clades, it was not always possible to apply North American or European names to African or Asian strains and vice versa. Some species were found to be limited to a specific host genus, whereas others were isolated from a wide host range. No single locus was found to be the ideal DNA barcode gene for the genus, and species identification needs to be based on a combination of gene loci and morphological characters. Additional primers were developed to supplement those previously published for amplification of the loci used in this study. TAXONOMIC NOVELTIES: New species - Cercospora coniogrammes Crous & R.G. Shivas, Cercospora delaireae C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora euphorbiae-sieboldianae C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora pileicola C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora vignigena C. Nakash., Crous, U. Braun & H.D. Shin. Typifications: epitypifications - Cercospora alchemillicola U. Braun & C.F. Hill, Cercospora althaeina Sacc., Cercospora armoraciae Sacc., Cercospora corchori Sawada, Cercospora mercurialis Pass., Cercospora olivascens Sacc., Cercospora violae Sacc.; neotypifications - Cercospora fagopyri N. Nakata & S. Takim., Cercospora sojina Hara.
Resumo:
There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.
Resumo:
Photorhabdus are highly effective insect pathogenic bacteria that exist in a mutualistic relationship with Heterorhabditid nematodes. Unlike other members of the genus, Photorhabdus asymbiotica can also infect humans. Most Photorhabdus cannot replicate above 34°C, limiting their host-range to poikilothermic invertebrates. In contrast, P. asymbiotica must necessarily be able to replicate at 37°C or above. Many well-studied mammalian pathogens use the elevated temperature of their host as a signal to regulate the necessary changes in gene expression required for infection. Here we use RNA-seq, proteomics and phenotype microarrays to examine temperature dependent differences in transcription, translation and phenotype of P. asymbiotica at 28°C versus 37°C, relevant to the insect or human hosts respectively. Our findings reveal relatively few temperature dependant differences in gene expression. There is however a striking difference in metabolism at 37°C, with a significant reduction in the range of carbon and nitrogen sources that otherwise support respiration at 28°C. We propose that the key adaptation that enables P. asymbiotica to infect humans is to aggressively acquire amino acids, peptides and other nutrients from the human host, employing a so called “nutritional virulence” strategy. This would simultaneously cripple the host immune response while providing nutrients sufficient for reproduction. This might explain the severity of ulcerated lesions observed in clinical cases of Photorhabdosis. Furthermore, while P. asymbiotica can invade mammalian cells they must also resist immediate killing by humoral immunity components in serum. We observed an increase in the production of the insect Phenol-oxidase inhibitor Rhabduscin normally deployed to inhibit the melanisation immune cascade. Crucially we demonstrated this molecule also facilitates protection against killing by the alternative human complement pathway.
Resumo:
One hundred and nine lactic acid bacterial strains (56 bifidobacteria-like and 53 lactobacilli-like) were isolated from faecal samples donated by healthy elderly individuals (>65 years old). Isolates were identified to species level by phenotypic analysis (by API) and by 16S rDNA sequencing. Eleven species of Lactobacillus and six species of Bifidobacterium were identified. The most frequently isolated lactobacillus was L. fermentum and the most frequently isolated bifidobacterium was closely related to B. infantis by 16S rDNA sequence alignment. The isolates were characterized for their antimicrobial activity against Clostridium difficile, enteropathogenic Escherichia coli (EPEC), verocytotoxigenic E. coli (VTEC) and Campylobacter jejuni. The lactobacilli displayed variations in their antimicrobial activity with few strains showing inhibitory activity against all pathogens. The bifidobacteria displayed higher levels of inhibitory activity against C. jejuni and Cl. difficile than against the E. coli strains. Keywords: Lactobacillus, Bifidobacterium, elderly, gastrointestinal microbiota, inhibition, Clostridium difficile, enteropathogenic Escherichia coli (EPEC), verocytotoxigenic E. coli (VTEC), Campylobacter jejuni.
Resumo:
1. The spatial and temporal abundance of the aphid Euceraphis betulae was investigated in relation to heterogeneity in host plant ( Betula pendula) vigour and pathogenic stress. The performance of aphids feeding on vigorous and stressed foliage was also examined. 2. The plant stress and plant vigour hypotheses have been suggested as opposing ways in which foliage quality influences herbivore abundance. In many plants, however, vigorous growing foliage co-exists with stressed or damaged foliage. 3. There was a negative correlation between branch growth ( vigour) and branch stress ( leaf chlorosis), with the most vigorous branches displaying little or no stress, and the most stressed branches achieving poor growth. There was a similar negative correlation between vigour and stress at the level of individual trees, which themselves represented a continuum in quality. 4. At the beginning of the season, E. betulae were intermittently more abundant on vigorous branches than on branches destined to become stressed, but aphids became significantly more abundant on stressed branches later in the season, when symptoms of stress became apparent. Similar patterns of aphid abundance were seen on vigorous and stressed trees in the following year. 5. Euceraphis betulae performance was generally enhanced when feeding on naturally stressed B. pendula leaves, but there was some evidence for elevated potential reproduction when feeding on vigorous leaves too. 6. Overall, plant stress probably influences E. betulae distribution more than plant vigour, but the temporal and spatial variability in plant quality suggests that plant vigour could play a role in aphid distribution early in the season.
Resumo:
Biocontrol agents such as Xeiwrhabduf, nemalophilci and X. nematophila ssp. bovienii and their cell-free protein toxin complexes were lethal to larvae of O. sulcatus when applied to potting compost in the absence of plants. Similarly, strawberry plants infected with 0. sulcaitfi larvae were protected from damage by applications of both cell suspensions of the bacteria and solutions of their cell-free toxic metabolites, indicating that it is the protein toxins, which are responsible for the lethal effects observed. These toxic metabolites were found more effective against 0. sulccitus larvae when treated in soil microflora. Insect mortality is increased by increasing temperature and bacterial concentration. The toxins remained pathogenic for several months when stored in potting soil either at 15 or 20°C, however, bacterial cells were not as persistent as the toxins. It is therefore suggested that these bacteria and their toxic metabolites can he applied in soil for insect pest control.
Resumo:
Background: Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. Results: Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. Conclusions: P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.
Resumo:
The use of bioluminescence was evaluated as a tool to study Pseudomonas syringae population dynamics in susceptible and resistant plant environments. Plasmid pGLITE, containing the luxCDABE genes from Photorhabdus luminescens, was introduced into Pseudomonas syringae pv. phaseolicola race 7 strain 1449B, a Gram-negative pathogen of bean (Phaseolus vulgaris). Bacteria recovered from plant tissue over a five-day period were enumerated by counting numbers of colony forming units and by measurement of bioluminescence. Direct measurement of bioluminescence from leaf disc homogenates consistently reflected bacterial growth as determined by viable counting, but also detected subtle effects of the plant resistance response on bacterial viability. This bioluminescence procedure enables real time measurement of bacterial metabolism and population dynamics in planta, obviates the need to carry out labour intensive and time consuming traditional enumeration techniques and provides a sensitive assay for studying plant effects on bacterial cells.
Resumo:
Aims: To investigate the effect of various carbon sources on the production of extracellular antagonistic compounds against two Escherichia coli strains and Salmonella enterica serotype Typhimurium by three canine-derived lactobacilli strains. Methods and Materials: Cell-free preparations, pH neutralized, were used in antibiotic disc experiments as an initial screening. The bacteria/carbohydrate combinations that showed inhibition of the growth of those pathogens, were further investigated in batch co-culture experiments. The cell-free supernatants of the cultures, that decreased the population number of the pathogens in the co-culture experiments to log CFU ml(-1) less than or equal to 4, were tested for inhibition of the pathogens in pure cultures at neutral and acidic pH. Conclusions: The results showed that the substrate seems to affect the production of antimicrobial compounds and this effect could not just be ascribed to the ability of the bacteria to grow in the various carbon sources. L. mucosae, L. acidophilus and L. reuteri, when grown in sugar mixtures consisting of alpha-glucosides (Degree of Polymerization (DP) 1-4) could produce antimicrobial compounds active against all three pathogens in vitro. This effect could not be attributed to a single ingredient of those sugar mixtures and was synergistic. This inhibition had a dose-response characteristic and was more active at acidic pH. Significance and Impact of the Study: Knowledge of the effect that the carbon source has on the production of antimicrobial compounds by gut-associated lactobacilli allows the rational design of prebiotic/probiotic combinations to combat gastrointestinal pathogens.
Resumo:
The aim of the study was to investigate the ability of pectic oligosaccharides (POS) to inhibit adhesion of three strains of verotoxigenic Escherichia coli, three strains of enteropathogenic E. coli, and one nonclinical strain of Desulfovibrio desulfuricans to human intestinal epithelial cell cultures. Lactobacillus acidophilus and Lactobacillus gasseri were included for comparison. Attachment wits determined in the human HT29 cell line by viable Count of adherent bacteria. POS in buffer at pH 7.2 were antiadhesive at a dose of 2.5 mg ml(-1), reducing adhesion of enteropathogenic E. coli and verotoxigenic E. coli strains to less than 30% of control values. Concentrations resulting in 50% inhibition ranged from 0.15 to 0.46 mg ml(-1). L. acidophilus was not significantly affected. but adhesion of L. gasseri was reduced to 29% of the control value. POS reduced the adhesion of D. desulfuricans to 0.33% of the control value. POS also had a protective effect against E. coli verocytotoxins VT1 and VT2 at concentrations of 0.01 and 1 mu g ml(-1), respectively.