181 resultados para Plane Problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem structuring methods or PSMs are widely applied across a range of variable but generally small-scale organizational contexts. However, it has been argued that they are seen and experienced less often in areas of wide ranging and highly complex human activity-specifically those relating to sustainability, environment, democracy and conflict (or SEDC). In an attempt to plan, track and influence human activity in SEDC contexts, the authors in this paper make the theoretical case for a PSM, derived from various existing approaches. They show how it could make a contribution in a specific practical context-within sustainable coastal development projects around the Mediterranean which have utilized systemic and prospective sustainability analysis or, as it is now known, Imagine. The latter is itself a PSM but one which is 'bounded' within the limits of the project to help deliver the required 'deliverables' set out in the project blueprint. The authors argue that sustainable development projects would benefit from a deconstruction of process by those engaged in the project and suggest one approach that could be taken-a breakout from a project-bounded PSM to an analysis that embraces the project itself. The paper begins with an introduction to the sustainable development context and literature and then goes on to illustrate the issues by grounding the debate within a set of projects facilitated by Blue Plan for Mediterranean coastal zones. The paper goes on to show how the analytical framework could be applied and what insights might be generated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indicators are commonly recommended as tools for assessing the attainment of development, and the current vogue is for aggregating a number of indicators together into a single index. It is claimed that such indices of development help facilitate maximum impact in policy terms by appealing to those who may not necessarily have technical expertise in data collection, analysis and interpretation. In order to help counter criticisms of over-simplification, those advocating such indices also suggest that the raw data be provided so as to allow disaggregation into component parts and hence facilitate a more subtle interpretation if a reader so desires. This paper examines the problems involved with interpreting indices of development by focusing on the United Nations Development Programmes (UNDP) Human Development Index (HDI) published each year in the Human Development Reports (HDRs). The HDI was intended to provide an alternative to the more economic based indices, such as GDP, commonly used within neo-liberal development agendas. The paper explores the use of the HDI as a gauge of human development by making comparisons between two major political and economic communities in Africa (ECOWAS and SADC). While the HDI did help highlight important changes in human development as expressed by the HDI over 10 years, it is concluded that the HDI and its components are difficult to interpret as methodologies have changed significantly and the 'averaging' nature of the HDI could hide information unless care is taken. The paper discusses the applicability of alternative models to the HDI such as the more neo-populist centred methods commonly advocated for indicators of sustainable development. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressing global environmental problems highlight the need to develop tools to measure progress towards "sustainability." However, some argue that any such attempt inevitably reflects the views of those creating such tools and only produce highly contested notions of "reality." To explore this tension, we critically assesses the Environmental Sustainability Index (ESI), a well-publicized product of the World Economic Forum that is designed to measure 'sustainability' by ranking nations on league tables based on extensive databases of environmental indicators. By recreating this index, and then using statistical tools (principal components analysis) to test relations between various components of the index, we challenge ways in which countries are ranked in the ESI. Based on this analysis, we suggest (1) that the approach taken to aggregate, interpret and present the ESI creates a misleading impression that Western countries are more sustainable than the developing world; (2) that unaccounted methodological biases allowed the authors of the ESI to over-generalize the relative 'sustainability' of different countries; and, (3) that this has resulted in simplistic conclusions on the relation between economic growth and environmental sustainability. This criticism should not be interpreted as a call for the abandonment of efforts to create standardized comparable data. Instead, this paper proposes that indicator selection and data collection should draw on a range of voices, including local stakeholders as well as international experts. We also propose that aggregating data into final league ranking tables is too prone to error and creates the illusion of absolute and categorical interpretations. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The “butterfly effect” is a popularly known paradigm; commonly it is said that when a butterfly flaps its wings in Brazil, it may cause a tornado in Texas. This essentially describes how weather forecasts can be extremely senstive to small changes in the given atmospheric data, or initial conditions, used in computer model simulations. In 1961 Edward Lorenz found, when running a weather model, that small changes in the initial conditions given to the model can, over time, lead to entriely different forecasts (Lorenz, 1963). This discovery highlights one of the major challenges in modern weather forecasting; that is to provide the computer model with the most accurately specified initial conditions possible. A process known as data assimilation seeks to minimize the errors in the given initial conditions and was, in 1911, described by Bjerkness as “the ultimate problem in meteorology” (Bjerkness, 1911).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of scattering of time-harmonic acoustic waves by an unbounded sound-soft rough surface. Recently, a Brakhage Werner type integral equation formulation of this problem has been proposed, based on an ansatz as a combined single- and double-layer potential, but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green's function. Moreover, it has been shown in the three-dimensional case that this integral equation is uniquely solvable in the space L-2 (Gamma) when the scattering surface G does not differ too much from a plane. In this paper, we show that this integral equation is uniquely solvable with no restriction on the surface elevation or slope. Moreover, we construct explicit bounds on the inverse of the associated boundary integral operator, as a function of the wave number, the parameter coupling the single- and double-layer potentials, and the maximum surface slope. These bounds show that the norm of the inverse operator is bounded uniformly in the wave number, kappa, for kappa > 0, if the coupling parameter h is chosen proportional to the wave number. In the case when G is a plane, we show that the choice eta = kappa/2 is nearly optimal in terms of minimizing the condition number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we use the no-response test idea, introduced in Luke and Potthast (2003) and Potthast (Preprint) and the inverse obstacle problem, to identify the interface of the discontinuity of the coefficient gamma of the equation del (.) gamma(x)del + c(x) with piecewise regular gamma and bounded function c(x). We use infinitely many Cauchy data as measurement and give a reconstructive method to localize the interface. We will base this multiwave version of the no-response test on two different proofs. The first one contains a pointwise estimate as used by the singular sources method. The second one is built on an energy (or an integral) estimate which is the basis of the probe method. As a conclusion of this, the probe and the singular sources methods are equivalent regarding their convergence and the no-response test can be seen as a unified framework for these methods. As a further contribution, we provide a formula to reconstruct the values of the jump of gamma(x), x is an element of partial derivative D at the boundary. A second consequence of this formula is that the blow-up rate of the indicator functions of the probe and singular sources methods at the interface is given by the order of the singularity of the fundamental solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a nonlocally perturbed half- space we consider the scattering of time-harmonic acoustic waves. A second kind boundary integral equation formulation is proposed for the sound-soft case, based on a standard ansatz as a combined single-and double-layer potential but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half- space Green's function. Due to the unboundedness of the surface, the integral operators are noncompact. In contrast to the two-dimensional case, the integral operators are also strongly singular, due to the slow decay at infinity of the fundamental solution of the three-dimensional Helmholtz equation. In the case when the surface is sufficiently smooth ( Lyapunov) we show that the integral operators are nevertheless bounded as operators on L-2(Gamma) and on L-2(Gamma G) boolean AND BC(Gamma) and that the operators depend continuously in norm on the wave number and on G. We further show that for mild roughness, i.e., a surface G which does not differ too much from a plane, the boundary integral equation is uniquely solvable in the space L-2(Gamma) boolean AND BC(Gamma) and the scattering problem has a unique solution which satisfies a limiting absorption principle in the case of real wave number.