28 resultados para Pigment layers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Edge structures of thermally treated graphite have been studied by means of atomically resolved high-resolution TEM. The method for the determination of a monolayer or more than one layer graphene sheets is established. A series of tilting experiments proves that the zigzag and armchair edges are mostly closed between adjacent graphene layers, and the number of dangling bonds is therefore minimized. Surprisingly bilayer graphene often exhibits AA stacking and is very hard to distinguish from a single graphene layer. Open edge structures with carbon dangling bonds can be found only in a local area where the closed (folding) edge is partially broken.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we use molecular dynamics to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer of molecules, creating a fresh bare interface with the bulk arrangement of molecules. After that the system evolves towards equilibrium, and the expected surface tension is re-established. We found that the system relaxation consists of three distinct stages. First, the mechanical balance is quickly re-established. During this process the notion of surface tension is meaningless. In the second stage, the surface tension equilibrates, and the density profile broadens to a value which we call “intrinsic” interfacial width. During the third stage, the density profile continues to broaden due to capillary wave excitations, which does not however affect the surface tension.We have observed this scenario for monatomic Lennard-Jones (LJ) liquid as well as for binary LJ mixtures at different temperatures, monitoring a wide range of physical observables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a two-dimensional problem of scattering of a time-harmonic electromagnetic plane wave by an infinite inhomogeneous conducting or dielectric layer at the interface between semi-infinite homogeneous dielectric half-spaces. The magnetic permeability is assumed to be a fixed positive constant. The material properties of the media are characterized completely by an index of refraction, which is a bounded measurable function in the layer and takes positive constant values above and below the layer, corresponding to the homogeneous dielectric media. In this paper, we examine only the transverse magnetic (TM) polarization case. A radiation condition appropriate for scattering by infinite rough surfaces is introduced, a generalization of the Rayleigh expansion condition for diffraction gratings. With the help of the radiation condition the problem is reformulated as an equivalent mixed system of boundary and domain integral equations, consisting of second-kind integral equations over the layer and interfaces within the layer. Assumptions on the variation of the index of refraction in the layer are then imposed which prove to be sufficient, together with the radiation condition, to prove uniqueness of solution and nonexistence of guided wave modes. Recent, general results on the solvability of systems of second kind integral equations on unbounded domains establish existence of solution and continuous dependence in a weighted norm of the solution on the given data. The results obtained apply to the case of scattering by a rough interface between two dielectric media and to many other practical configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, dynamically consistent model of mixing and transport in Rossby-wave critical layers is obtained from the well-known Stewartson–Warn–Warn (SWW) solution of Rossby-wave critical-layer theory. The SWW solution is thought to be a useful conceptual model of Rossby-wave breaking in the stratosphere. Chaotic advection in the model is a consequence of the interaction between a stationary and a transient Rossby wave. Mixing and transport are characterized separately with a number of quantitative diagnostics (e.g. mean-square dispersion, lobe dynamics, and spectral moments), and with particular emphasis on the dynamics of the tracer field itself. The parameter dependences of the diagnostics are examined: transport tends to increase monotonically with increasing perturbation amplitude whereas mixing does not. The robustness of the results is investigated by stochastically perturbing the transient-wave phase speed. The two-wave chaotic advection model is contrasted with a stochastic single-wave model. It is shown that the effects of chaotic advection cannot be captured by stochasticity alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates urban canopy layers (UCL) ventilation under neutral atmospheric condition with the same building area density (λp=0.25) and frontal area density (λf=0.25) but various urban sizes, building height variations, overall urban forms and wind directions. Turbulent airflows are first predicted by CFD simulations with standard k-ε model evaluated by wind tunnel data. Then air change rates per hour (ACH) and canopy purging flow rate (PFR) are numerically analyzed to quantify the rate of air exchange and the net ventilation capacity induced by mean flows and turbulence. With a parallel approaching wind (θ=0o), the velocity ratio first decreases in the adjustment region, followed by the fully-developed region where the flow reaches a balance. Although the flow quantities macroscopically keep constant, however ACH decreases and overall UCL ventilation becomes worse if urban size rises from 390m to 5km. Theoretically if urban size is infinite, ACH may reach a minimum value depending on local roof ventilation, and it rises from 1.7 to 7.5 if the standard deviation of building height variations increases (0% to 83.3%). Overall UCL ventilation capacity (PFR) with a square overall urban form (Lx=Ly=390m) is better as θ=0o than oblique winds (θ=15o, 30o, 45o), and it exceeds that of a staggered urban form under all wind directions (θ=0o to 45o), but is less than that of a rectangular urban form (Lx=570m, Ly=270m) under most wind directions (θ=30o to 90o). Further investigations are still required to quantify the net ventilation efficiency induced by mean flows and turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples containing red pigment have been collected from two different archaeological sites dating to the Neolithic (Çatalhöyük in Turkey and Sheikh-e Abad in Iran) and have been analysed by a range of techniques. Sub-samples were examined by IR spectroscopy and X-ray diffraction, whilst thin sections were studied using optical polarising microscopy, synchrotron based IR microscopy and environmental scanning electron microscopy with energy dispersive X-ray analysis. Thin layers of red paint in a wall painting from Çatalhöyük were found to contain ochre (hematite and clay) as well as an unexpected component, grains of red and colourless obsidian, which have not been identified in any previous studies of the wall paintings at Çatalhöyük. These small grains of obsidian may have improved the reflective properties of the paint and made the artwork more vivid in the darkness of the buildings. Analysis of a roughly shaped ball of red sediment found on a possible working surface at Sheikh-e Abad revealed that the cause of the red colouring was the mineral hematite, which was probably from a source of terra rossa sediment in the local area. The results of this work suggest it is unlikely that this had been altered by the Neolithic people through mixing with other minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The permeability of the lung is critical in determining the disposition of inhaled drugs and the respiratory epithelium provides the main physical barrier to drug absorption. The 16HBE14o- human bronchial epithelial cell line has been developed recently as a model of the airway epithelium. In this study, the transport of 10 low molecular weight compounds was measured in the 16HBE14o- cell layers, with apical to basolateral (absorptive) apparent permeability coefficients (P(app)) ranging from 0.4 x 10(-6)cms(-1) for Tyr-D-Arg-Phe-Phe-NH(2) to 25.2x10(-6)cms(-1) for metoprolol. Permeability in 16HBE14o- cells was found to correlate with previously reported P(app) in Caco-2 cells and absorption rates in the isolated perfused rat lung (k(a,lung)) and the rat lung in vivo (k(a,in vivo)). Log linear relationships were established between P(app) in 16HBE14o- cells and P(app) in Caco-2 cells (r(2)=0.82), k(a,lung) (r(2)=0.78) and k(a,in vivo) (r(2)=0.68). The findings suggest that permeability in 16HBE14o- cells may be useful to predict the permeability of compounds in the lung, although no advantage of using the organ-specific cell line 16HBE14o- compared to Caco-2 cells was found in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the range of materials used in bioengineering, parylene-C has been used in combination with silicon oxide and in presence of the serum proteins, in cell patterning. However, the structural properties of adsorbed serum proteins on these substrates still remain elusive. In this study, we use an optical biosensing technique to decipher the properties of fibronectin (Fn) and serum albumin adsorbed on parylene-C and silicon oxide substrates. Our results show the formation of layers with distinct structural and adhesive properties. Thin, dense layers are formed on parylene-C, whereas thicker, more diffuse layers are formed on silicon oxide. These results suggest that Fn acquires a compact structure on parylene-C and a more extended structure on silicon oxide. Nonetheless, parylene-C and silicon oxide substrates coated with Fn host cell populations that exhibit focal adhesion complexes and good cell attachment. Albumin adopts a deformed structure on parylene-C and a globular structure on silicon oxide, and does not support significant cell attachment on either surface. Interestingly, the co-incubation of Fn and albumin at the ratio found in serum, results in the preferential adsorption of albumin on parylene-C and Fn on silicon oxide. This finding is supported by the exclusive formation of focal adhesion complexes in differentiated mouse embryonic stem cells (CGR8), cultured on Fn/albumin coated silicon oxide, but not on parylene-C. The detailed information provided in this study on the distinct properties of layers of serum proteins on substrates such as parylene-C and silicon oxide is highly significant in developing methods for cell patterning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter presents findings on English Language instruction at the lower primary level in the context of policies for curricular innovation at national, school and classroom levels. The focus is on policies which connect national and school levels, and on how they might be interpreted when implemented in multiple schools within Singapore’s educational system. Referring to case studies in two schools and to individual lesson observations in 10 schools, we found much agreement with national policies in terms of curriculum (i.e. lesson content and activity selection),leading to great uniformity in the lessons taught by different teachers in different schools. In addition, we found that schools had an important mediating influence on implementation of national policies. However, adoptions and adaptations of policy innovations at the classroom level were somewhat superficial as they were more related to changes in educational facilities and procedures than in philosophies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the origin of the properties of metal-supported metal thin films is important for the rational design of bimetallic catalysts and other applications, but it is generally difficult to separate effects related to strain from those arising from interface interactions. Here we use density functional (DFT) theory to examine the structure and electronic behavior of few-layer palladium films on the rhenium (0001) surface, where there is negligible interfacial strain and therefore other effects can be isolated. Our DFT calculations predict stacking sequences and interlayer separations in excellent agreement with quantitative low-energy electron diffraction experiments. By theoretically simulating the Pd core-level X-ray photoemission spectra (XPS) of the films, we are able to interpret and assign the basic features of both low-resolution and high-resolution XPS measurements. The core levels at the interface shift to more negative energies, rigidly following the shifts in the same direction of the valence d-band center. We demonstrate that the valence band shift at the interface is caused by charge transfer from Re to Pd, which occurs mainly to valence states of hybridized s-p character rather than to the Pd d-band. Since the d-band filling is roughly constant, there is a correlation between the d-band center shift and its bandwidth. The resulting effect of this charge transfer on the valence d-band is thus analogous to the application of a lateral compressive strain on the adlayers. Our analysis suggests that charge transfer should be considered when describing the origin of core and valence band shifts in other metal / metal adlayer systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new inferences about cloud vertical structures from multidirectionnal measurements in the oxygen A-band. The analysis of collocated data provided by instruments onboard satellite platforms within the A-Train, as well as simulations have shown that for monolayered clouds, the cloud oxygen pressure PO2PO2 derived from the POLDER3 instrument was sensitive to the cloud vertical structure in two ways: First, PO2PO2 is actually close to the pressure of the geometrical middle of cloud and we propose a method to correct it to get the cloud top pressure (CTP), and then to obtain the cloud geometrical extent. Second, for the liquid water clouds, the angular standard deviation σPO2σPO2 of PO2PO2 is correlated with the geometrical extent of cloud layers, which makes possible a second estimation of the cloud geometrical thickness. The determination of the vertical location of cloud layers from passive measurements, eventually completed from other observations, would be useful in many applications for which cloud macrophysical properties are needed