70 resultados para Pig fattening
Resumo:
Mast cells that are in close proximity to autonomic and enteric nerves release several mediators that cause neuronal hyperexcitability. This study examined whether mast cell tryptase evokes acute and long-term hyperexcitability in submucosal neurons from the guinea-pig ileum by activating proteinase-activated receptor 2 (PAR2) on these neurons. We detected the expression of PAR2 in the submucosal plexus using RT-PCR. Most submucosal neurons displayed PAR2 immunoreactivity, including those colocalizing VIP. Brief (minutes) application of selective PAR2 agonists, including trypsin, the activating peptide SL-NH2 and mast cell tryptase, evoked depolarizations of the submucosal neurons, as measured with intracellular recording techniques. The membrane potential returned to resting values following washout of agonists, but most neurons were hyperexcitable for the duration of recordings (> 30 min-hours) and exhibited an increased input resistance and amplitude of fast EPSPs. Trypsin, in the presence of soybean trypsin inhibitor, and the reverse sequence of the activating peptide (LR-NH2) had no effect on neuronal membrane potential or long-term excitability. Degranulation of mast cells in the presence of antagonists of established excitatory mast cell mediators (histamine, 5-HT, prostaglandins) also caused depolarization, and following washout of antigen, long-term excitation was observed. Mast cell degranulation resulted in the release of proteases, which desensitized neurons to other agonists of PAR2. Our results suggest that proteases from degranulated mast cells cleave PAR2 on submucosal neurons to cause acute and long-term hyperexcitability. This signalling pathway between immune cells and neurons is a previously unrecognized mechanism that could contribute to chronic alterations in visceral function.
Resumo:
The UK Department for Environment, Food and Rural Affairs (Defra) identified practices to reduce the risk of animal disease outbreaks. We report on the response of sheep and pig farmers in England to promotion of these practices. A conceptual framework was established from research on factors influencing adoption of animal health practices, linking knowledge, attitudes, social influences and perceived constraints to the implementation of specific practices. Qualitative data were collected from nine sheep and six pig enterprises in 2011. Thematic analysis explored attitudes and responses to the proposed practices, and factors influencing the likelihood of implementation. Most feel they are doing all they can reasonably do to minimise disease risk and that practices not being implemented are either not relevant or ineffective. There is little awareness and concern about risk from unseen threats. Pig farmers place more emphasis than sheep farmers on controlling wildlife, staff and visitor management and staff training. The main factors that influence livestock farmers’ decision on whether or not to implement a specific disease risk measure are: attitudes to, and perceptions of, disease risk; attitudes towards the specific measure and its efficacy; characteristics of the enterprise which they perceive as making a measure impractical; previous experience of a disease or of the measure; and the credibility of information and advice. Great importance is placed on access to authoritative information with most seeing vets as the prime source to interpret generic advice from national bodies in the local context. Uptake of disease risk measures could be increased by: improved risk communication through the farming press and vets to encourage farmers to recognise hidden threats; dissemination of credible early warning information to sharpen farmers’ assessment of risk; and targeted information through training events, farming press, vets and other advisers, and farmer groups, tailored to the different categories of livestock farmer.
Resumo:
Background: The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals. Objective: To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period. Design: Piglets (n¼14) were weaned onto either an eggbased or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary 1H NMR metabolic profile was obtained from each animal at post mortem (11 weeks). Results: Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation. Conclusion: The correlation of urinary 1H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multiplatform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.
Resumo:
Studying the pathogenesis of an infectious disease like colibacillosis requires an understanding of the responses of target hosts to the organism both as a pathogen and as a commensal. The mucosal immune system constitutes the primary line of defence against luminal micro-organisms. The immunoglobulin-superfamily-based adaptive immune system evolved in the earliest jawed vertebrates, and the adaptive and innate immune system of humans, mice, pigs and ruminants co-evolved in common ancestors for approximately 300 million years. The divergence occurred only 100 mya and, as a consequence, most of the fundamental immunological mechanisms are very similar. However, since pressure on the immune system comes from rapidly evolving pathogens, immune systems must also evolve rapidly to maintain the ability of the host to survive and reproduce. As a consequence, there are a number of areas of detail where mammalian immune systems have diverged markedly from each other, such that results obtained in one species are not always immediately transferable to another. Thus, animal models of specific diseases need to be selected carefully, and the results interpreted with caution. Selection is made simpler where specific host species like cattle and pigs can be both target species and reservoirs for human disease, as in infections with Escherichia coli.
Resumo:
The pig is a single-stomached omnivorous mammal and is an important model of human disease and nutrition. As such, it is necessary to establish a metabolic framework from which pathology-based variation can be compared. Here, a combination of one and two-dimensional 1H and 13C nuclear magnetic resonance spectroscopy (NMR) and high-resolution magic angle spinning (HR-MAS) NMR was used to provide a systems overview of porcine metabolism via characterisation of the urine, serum, liver and kidney metabolomes. The metabolites observed in each of these biological compartments were found to be qualitatively comparable to the metabolic signature of the same biological matrices in humans and rodents. The data were modelled using a combination of principal components analysis and Venn diagram mapping. Urine represented the most metabolically distinct biological compartment studied, with a relatively greater number of NMR detectable metabolites present, many of which are implicated in gut-microbial co-metabolic processes. The major interspecies differences observed were in the phase II conjugation of extra-genomic metabolites; the pig was observed to conjugate p-cresol, a gut microbial metabolite of tyrosine, with glucuronide rather than sulfate as seen in man. These observations are important to note when considering the translatability of experimental data derived from porcine models.
Resumo:
The protease activated receptor-2 (PAR-2) belongs to a family of G-protein-coupled receptors that are activated by proteolysis. Trypsin cleaves PAR-2, exposing an N-terminal tethered ligand (SLIGRL) that activates the receptor. Messenger RNA (mRNA) for PAR-2 was found in guinea pig airway tissue by reverse transcription-polymerase chain reaction, and PAR-2 was found by immunohistochemistry in airway epithelial and smooth-muscle cells. In anesthetized guinea pigs, trypsin and SLIGRL-NH(2) (given intratracheally or intravenously) caused a bronchoconstriction that was inhibited by the combination of tachykinin-NK(1) and -NK(2) receptor antagonists and was potentiated by inhibition of nitric oxide synthase (NOS). Trypsin and SLIGRL-NH(2) relaxed isolated trachea and main bronchi, and contracted intrapulmonary bronchi. Relaxation of main bronchi was abolished or reversed to contraction by removal of epithelium, administration of indomethacin, and NOS inhibition. PAR-1, PAR-3, and PAR-4 were not involved in the bronchomotor action of either trypsin or SLIGRL-NH(2), because ligands of these receptors were inactive either in vitro or in vivo, and because thrombin (a PAR-1 and PAR-3 agonist) did not show cross-desensitization with PAR-2 agonists in vivo. Thus, we have localized PAR-2 to the guinea-pig airways, and have shown that activation of PAR-2 causes multiple motor effects in these airways, including in vivo bronchoconstriction, which is in part mediated by a neural mechanism.
Resumo:
OBJECTIVES: In 2009, CTX-M Enterobacteriaceae and Salmonella isolates were recovered from a UK pig farm, prompting studies into the dissemination of the resistance and to establish any relationships between the isolates. METHODS: PFGE was used to elucidate clonal relationships between isolates whilst plasmid profiling, restriction analysis, sequencing and PCR were used to characterize the CTX-M-harbouring plasmids. RESULTS: Escherichia coli, Klebsiella pneumoniae and Salmonella 4,5,12:i:- and Bovismorbificans resistant to cefotaxime (n = 65) were recovered and 63 were shown by PCR to harbour a group 1 CTX-M gene. The harbouring hosts were diverse, but the group 1 CTX-M plasmids were common. Three sequenced CTX-M plasmids from E. coli, K. pneumoniae and Salmonella enterica serotype 4,5,12:i:- were identical except for seven mutations and highly similar to IncI1 plasmid ColIb-P9. Two antimicrobial resistance regions were identified: one inserted upstream of yacABC harbouring ISCR2 transposases, sul2 and floR; and the other inserted within shfB of the pilV shufflon harbouring the ISEcp1 transposase followed by blaCTX-M-1. CONCLUSIONS: These data suggest that an ST108 IncI1 plasmid encoding a blaCTX-M-1 gene had disseminated across multiple genera on this farm, an example of horizontal gene transfer of the blaCTX-M-1 gene.
Resumo:
This Note outlines the further development of a system of models for the estimation of the costs of livestock diseases first presented by Bennett (2003). The models have been developed to provide updated and improved estimates of the costs associated with 34 endemic diseases of livestock in Great Britain, using border prices and including assessments of the impact of diseases on human health and animal welfare. Results show that, of the diseases studied, mastitis has the highest costs for cattle diseases, enzootic abortion for sheep diseases, swine influenza for pig diseases and salmonellosis for poultry diseases.
Resumo:
Increasing rates of obesity and heart disease are compromising quality of life for a growing number of people. There is much research linking adult disease with the growth and development both in utero and during the first year of life. The pig is an ideal model for studying the origins of developmental programming. The objective of this paper was to construct percentile growth curves for the pig for use in biomedical studies. The body weight (BIN) of pigs was recorded from birth to 150 days of age and their crown-to-rump length was measured over the neonatal period to enable the ponderal index (Pl; kg/m(3)) to be calculated. Data were normalised and percentile curves were constructed using Cole's lambda-mu-sigma (LMS) method for BW and PI. The construction of these percentile charts for use in biomedical research will allow a more detailed and precise tracking of growth and development of individual pigs under experimental conditions.
Resumo:
Women who were themselves small-for-gestational age (SGA) are at a greater risk of adulthood diseases such as non-insulin-dependent diabetes mellitus (NIDDM), and twice at risk of having an SGA baby themselves. The aim of this study was to examine the intergenerational pig. Low (L) and normal (N) birth weight female piglets were followed throughout their first pregnancy (generation 1 (0)). After they had given birth, the growth and development of the lightest (I) and heaviest (n) female piglet from each litter were monitored until approximately 5 months of age (generation 2 (G2)). A glucose tolerance test (GTT) was conducted on G1 pig at similar to 6 months of age and again during late pregnancy; a GTT was also conducted on G2 pigs at similar to 4 months of age. G1 L offspring exhibited impaired glucose metabolism in later life compared to their G1 N sibling but in the next generation a similar scenario was only observed between I and n offspring born to G1 L mothers. Despite G1 L mothers showing greater glucose intolerance in late pregnancy and a decreased litter size, average piglet birth weight was reduced and there was also a large variation in litter weight; this suggests that they were, to some extent, prioritising their nutrient intake towards themselves rather than promoting their reproductive performance. There were numerous relationships between body shape at birth and glucose curve characteristics in later life, which can, to some extent, be used to predict neonatal outcome. In conclusion, intergenerational effects are partly seen in the pig. It is likely that some of the intergenerational influences may be masked due to the pig being a litter-bearing species.
Resumo:
An experiment was conducted to determine the effects of including cottonseed cake in rations for weaned growing pigs. Thirty-two Landrace x Large White pigs, weighing 20-24 kg, were included in four blocks formed on the basis of initial weight within sex in an otherwise completely randomized block design. The pigs were killed when they reached a live weight of 75.0 +/- 2.0 kg and the half careases were analysed into cuts and the weights of the organs were recorded. An estimate of the productivity of the pigs on each diet was calculated. Cottonseed cake reduced the voluntary feed intake (p < 0.001) and live weight gains (p < 0.001) and increased the heart, kidney and liver weights (p < 0.01). The pigs on the soya bean-based control diet took the shortest time to reach slaughter weight. The result was probably in part due to lysine deficiency and in part to the effect of free gossypol. It was found that it is at present cost-effective to include cottonseed cake in pig weaner grower diets up to 300 g/kg in Cameroon.
Resumo:
We investigate the factors precipitating market entry where smallholders make decisions about participation (a discrete choice about whether to sell quantities of products) and supply (a continuous-valued choice about how much quantity to sell) in a cross-section of smallholders in Northern Luzon, Philippines, in a model that combines basic probit and Tobit ideas, is implemented using Bayesian methods, and generates precise estimates of the inputs required in order to effect entry among the non-participants. We estimate the total amounts of (cattle, buffalo, pig and chicken) livestock input required to effect entry and compare and contrast the alternative input requirements. To the extent that our smallholder sample may be representative of a wide and broader set of circumstances, our findings shed light on offsetting impacts of conflicting factors that complicate the roles for policy in the context of expanding the density of participation.
Resumo:
We have shown that there is significant disparity in the expression of uncoupling proteins (UCP) 2 and 3 between modern-commercial and ancient-Meishan porcine genotypes, commercial pigs also have higher plasma triiodothyronine (T(3)) in on the first day of life. T(3) and the sympathetic nervous system are both known to regulate UCPs in rodents and humans; their role in regulating these proteins in the pig is unknown. This study examined whether thyroid hormone manipulation or administration of a selective beta3 adrenoceptor agonist (ZD) influenced plasma hormones, colonic temperature and UCP expression in adipose tissue of two breeds of pig. To mimic the differences observed in thyroid hormone status, piglets from Meishan and commercial litters were randomly assigned to control (1 ml/kg water), T(3) (10 mg/kg) (Meishan only), methimazole (a commonly used antithyroid drug) (50 mg/kg) (commercial only) or ZD (10 mg/kg) oral administration for the first 4 days of postnatal life. Adipose tissue UCP2/3 mRNA abundance was measured on day 4 using PCR. T(3) administration raised plasma T(3) concentrations and increased colonic temperature on day 4. UCP3 mRNA abundance was higher in Meishan, than commercial piglets (p = 0.042) and was downregulated following T(3) administration (p = 0.014). Irrespective of genotype, ZD increased UCP2 mRNA abundance (Meishan p = 0.05, commercial p = 0.03). Expression of neither UCP2 nor 3 was related to colonic temperature, regardless of treatment. In conclusion, we have demonstrated a dissociation between thyroid hormones and the sympathetic nervous system in the regulation of UCPs in porcine adipose tissue. We have also suggested that expression of adipose tissue UCP2 and 3 are not related to body temperature in piglets.
Resumo:
The member countries of the World Health Organization (WHO) have recently endorsed its global strategy on diet, physical activity and health. The strategy emphasises the need to limit the consumption of saturated fats and trans-fatty acids, salt and sugars, and to increase consumption of fruits and vegetables in order to combat the growing burden of non-communicable diseases. This paper attempts a broad quantitative assessment of the consumption impacts of these norms in OECD countries using a mathematical programming approach. We find that adherence to the WHO norms would involve a significant decrease in the consumption of vegetable oils (30%), dairy products (28%), sugar (24%), animal fats (30%) and meat (pig meat, 13.5%, mutton and goat 14.5%) and a significant increase in the human consumption of cereals (31%), fruits (25%) and vegetables (21%). (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A Bayesian method of classifying observations that are assumed to come from a number of distinct subpopulations is outlined. The method is illustrated with simulated data and applied to the classification of farms according to their level and variability of income. The resultant classification shows a greater diversity of technical charactersitics within farm types than is conventionally the case. The range of mean farm income between groups in the new classification is wider than that of the conventional method and the variability of income within groups is narrower. Results show that the highest income group in 2000 included large specialist dairy farmers and pig and poultry producers, whilst in 2001 it included large and small specialist dairy farms and large mixed dairy and arable farms. In both years the lowest income group is dominated by non-milk producing livestock farms.