22 resultados para Pico das Agulhas Negras


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A positive salinity anomaly of 0.2 PSU was observed between 50 and 200 m over the years 2000–2001 across the Mozambique Channel at a section at 17°S which was repeated in 2003, 2005, 2006, and 2008. Meanwhile, a moored array is continued from 2003 to 2008. This anomaly was most distinct showing an interannual but nonseasonal variation. The possible origin of the anomaly is investigated using output from three ocean general circulation models (Estimating the Circulation and Climate of the Ocean, Ocean Circulation and Climate Advanced Modeling, and Parallel Ocean Program). The most probable mechanism for the salinity anomaly is the anomalous inflow of subtropical waters caused by a weakening of the northern part of the South Equatorial Current by weaker trade winds. This mechanism was found in all three numerical models. In addition, the numerical models indicate a possible salinization of one of the source water masses to the Mozambique Channel as an additional cause of the anomaly. The anomaly propagated southward into the Agulhas Current and northward along the African coast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing evidence that the interocean exchange south of Africa is an important link in the global overturning circulation of the ocean, the so‐called ocean conveyer belt. At this location, warm and salty Indian Ocean waters enter the South Atlantic and are pulled by currents that eventually reach the North Atlantic, where water cools and sinks. A major contributor to the exchange is the frequent shedding of ring eddies from the termination of the Agulhas Current south of the tip of Africa. This shedding is controlled by developments far upstream in the Indian Ocean, and variations in this ‘Agulhas Leakage’ can lead to changes in the rate and stability of the Atlantic overturning, with possible associated global climate variations [Weijer et al., 1999]. Regional climate variations in the tropical and subtropical Indian Ocean are known to affect the whole system of the Agulhas Current, including the interocean exchanges. This article reports on some of the seminal results of ongoing multinational, multidisciplinary projects that explore these issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (~ 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Phosphorus (P) is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species. Methodology and Findings: Transcriptional responses to P starvation were studied in nine diverse melon accessions by comparing the expression of eight candidate genes (Cm-PAP10.1, Cm-PAP10.2, Cm-RNS1, Cm-PPCK1, Cm-transferase, Cm-SQD1, Cm-DGD1 and Cm-SPX2) under P replete and P starved conditions. Differences among melon accessions were observed in response to P starvation, including differences in plant morphology, P uptake, P use efficiency (PUE) and gene expression. All studied genes were up regulated under P starvation conditions. Differences in the expression of genes involved in P mobilization and remobilization (Cm-PAP10.1, Cm-PAP10.2 and Cm-RNS1) under P starvation conditions explained part of the differences in P uptake and PUE among melon accessions. The levels of expression of the other studied genes were diverse among melon accessions, but contributed less to the phenotypical response of the accessions. Conclusions: This is the first time that these genes have been described in the context of P starvation responses in melon. There exists significant diversity in gene expression levels and P use efficiency among melon accessions as well as significant correlations between gene expression levels and phenotypical measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Monosporascus cannonballus is the main causal agent of melon vine decline disease. Several studies have been carried out mainly focused on the study of the penetration of this pathogen into melon roots, the evaluation of symptoms severity on infected roots, and screening assays for breeding programs. However, a detailed molecular view on the early interaction between M. cannonballus and melon roots in either susceptible or resistant genotypes is lacking. In the present study, we used a melon oligo-based microarray to investigate the gene expression responses of two melon genotypes, Cucumis melo 'Piel de sapo' ('PS') and C. melo 'Pat 81', with contrasting resistance to the disease. This study was carried out at 1 and 3 days after infection (DPI) by M. cannonballus. Results: Our results indicate a dissimilar behavior of the susceptible vs. the resistant genotypes from 1 to 3 DPI. 'PS' responded with a more rapid infection response than 'Pat 81' at 1 DPI. At 3 DPI the total number of differentially expressed genes identified in 'PS' declined from 451 to 359, while the total number of differentially expressed transcripts in 'Pat 81' increased from 187 to 849. Several deregulated transcripts coded for components of Ca2+ and jasmonic acid (JA) signalling pathways, as well as for other proteins related to defence mechanisms. Transcriptional differences in the activation of the JA-mediated response in 'Pat 81' compared to 'PS' suggested that JA response might be partially responsible for their observed differences in resistance. Conclusions: As a result of this study we have identified for the first time a set of candidate genes involved in the root response to the infection of the pathogen causing melon vine decline. This information is useful for understanding the disease progression and resistance mechanisms few days after inoculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Southern Ocean circulation consists of a complicated mixture of processes and phenomena that arise at different time and spatial scales which need to be parametrized in the state-of-the-art climate models. The temporal and spatial scales that give rise to the present-day residual mean circulation are here investigated by calculating the Meridional Overturning Circulation (MOC) in density coordinates from an eddy-permitting global model. The region sensitive to the temporal decomposition is located between 38°S and 63°S, associated with the eddy-induced transport. The ‘‘Bolus’’ component of the residual circulation corresponds to the eddy-induced transport. It is dominated by timescales between 1 month and 1 year. The temporal behavior of the transient eddies is examined in splitting the ‘‘Bolus’’ component into a ‘‘Seasonal’’, an ‘‘Eddy’’ and an ‘‘Inter-monthly’’ component, respectively representing the correlation between density and velocity fluctuations due to the average seasonal cycle, due to mesoscale eddies and due to large-scale motion on timescales longer than one month that is not due to the seasonal cycle. The ‘‘Seasonal’’ bolus cell is important at all latitudes near the surface. The ‘‘Eddy’’ bolus cell is dominant in the thermocline between 50°S and 35°S and over the whole ocean depth at the latitude of the Drake Passage. The ‘‘Inter-monthly’’ bolus cell is important in all density classes and is maximal in the Brazil–Malvinas Confluence and the Agulhas Return Current. The spatial decomposition indicates that a large part of the Eulerian mean circulation is recovered for spatial scales larger than 11.25°, implying that small-scale meanders in the Antarctic Circumpolar Current (ACC), near the Subantarctic and Polar Fronts, and near the Subtropical Front are important in the compensation of the Eulerian mean flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between 1995 and 2000, on average 4 eddies per year are observed from satellite altimetry to propagate southward through the Mozambique Channel, into the upstream Agulhas region. Further south, these eddies have been found to control the timing and frequenc yof Agulhas ring shedding. Within the Mozambique Channel, anomalous SSH amplitudes rise to 30 cm ; in agreement with in situ measured velocities. Comparison of an observed velocit ysection with GCM model results shows that the Mozambique Channel eddies in these models are too surface intensified. Also, the number of eddies formed in the models is in disagreement with our observational analysis. Moored current meter measurements observing the passage of three eddies in 2000 are extended to a 5-year time series b yreferencing the anomalous surface currents estimated from altimeter data to a s ynoptic LADCP velocit y measurement. The results show intermittent edd ypassage at the mooring location. A statistical analysis of SSH observations in different parts of the Mozambique Channel shows a southward decrease of the dominant frequency of the variability, going from 7 per year in the extension of the South Equatorial Current north of Madagascar to 4 per year south of Madagascar. The observations suggest that frequency reduction is related to the Rossb ywaves coming in from the east