21 resultados para Phytochemistry
Resumo:
Maculalactone A is the most abundant secondary metabolite in Kyrtuthrix maculans, a marine cyanobacterium found in the mid-high shore of moderately exposed to sheltered rocky shores in Hong Kong and South East Asia. This species appears to survive as pure colonies forming distinct black zones on the rock. Maculalactone A may provide K. maculans with a chemical defense against several marine organisms, including the common grazer, Chlorostoma argyrostoma and settlement by larvae of the barnacles, Tetraclita japonica, Balanus amphitrite and Ibla cumingii. The natural concentration of maculalactone A varied with season and also with tidal height on the shore and although a strong positive linear correlation was observed between maculalactone A concentration and herbivore grazing pressure, manipulative experiments demonstrated that grazing pressure was not directly responsible for inducing the biosynthesis of this metabolite. The potential of maculalactone A as a natural marine anti-fouling agent (i.e. as an alternative to environmentally-damaging copper- and tin-based anti-fouling paints) was investigated after achieving a gram-scale synthesis of this compound. Preliminary field trials with anti-fouling paints which contained synthetic maculalactone A as the active principle have confirmed that this compound seems to have a specific activity against molluscan settlers.
Resumo:
This study investigated 37 diverse sainfoin (Onobrychis viciifolia Scop.) accessions from the EU ‘HealthyHay’ germplasm collection for proanthocyanidin (PA) content and composition. Accessions displayed a wide range of differences: PA contents varied from 0.57 to 2.80 g/100 g sainfoin; the mean degree of polymerisation from 12 to 84; the proportion of prodelphinidin tannins from 53% to 95%, and the proportion of trans-flavanol units from 12% to 34%. A positive correlation was found between PA contents (thiolytic versus acid–butanol degradation; P < 0.001; R2 = 0.49). A negative correlation existed between PA content (thiolysis) and mDP (P < 0.05; R2 = −0.30), which suggested that accessions with high PA contents had smaller PA polymers. Cluster analysis revealed that European accessions clustered into two main groups: Western Europe and Eastern Europe/Asia. In addition, accessions from USA, Canada and Armenia tended to cluster together. Overall, there was broad agreement between tannin clusters and clusters that were based on morphological and agronomic characteristics.
Resumo:
Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.
Resumo:
The demand for plant material of Rhodiola rosea L. (Crassulaceae) for medicinal use has increased recently, amid concerns about its quality and sustainability. We have analysed the content of phenylpropanoids (total rosavins) and salidroside in liquid extracts from 3-year old cultivated plants of European origin, and mapped the influence of plant part (rhizome versus root), genotype, drying, cutting, and extraction solvent to chemical composition. Rhizomes contained 1.5-4 times more salidroside (0.3-0.4% dry wt) and total rosavins (1.2-3.0%) than roots. The qualitative decisive phenylpropanoid content in the extracts was most influenced by plant part, solvent, and genotype, while drying temperature and cutting conditions were of less importance. We have shown that R. rosea from different boreal European provenances can be grown under temperate conditions and identified factors to obtain consistent high quality extracts provided that authentic germplasm is used and distinguished between rhizome, roots and their mixtures.
Resumo:
Proanthocyanidins (PA) from shea (Vitellaria paradoxa) meal were investigated by thiolytic degradation with benzyl mercaptan and the reaction products were analysed by high performance liquid chromatography–mass spectrometry. These PA were galloylated (≈40%), contained only B-type linkages and had a high proportion of prodelphinidins (>70%). The mean degree of polymerisation was 8 (i.e. average molecular size was 2384 Da) and epigallocatechin gallate (EGCg) was the major flavan-3-ol subunit in PA. Shea meal also proved to be a potentially valuable source for extracting free flavan-3-ol-O-gallates, especially EGCg (575 mg/kg meal), which is known for its health and anti-parasitic benefits. Proanthocyanidins were isolated and tested for bioactivity against Ascaris suum, which is an important parasite of pigs. Migration and motility tests revealed that these PA have potent activity against this parasitic nematode.