23 resultados para Philippines. Legislature. Philippine Assembly.
Resumo:
Recent biochemical studies have identified high molecular complexes of the HIV Gag precursor in the cytosol of infected cells. Using immunoelectron microscopy we studied the time course of the synthesis and assembly of a HIV Gag precursor protein (pr55gag) in Sf9 cells infected with recombinant baculovirus expressing the HIV gag gene. We also immunolabeled for pr55gag human T4 cells acutely or chronically infected with HIV-1. In Sf9 cells, the time course study showed that the first Gag protein appeared in the cytoplasm at 28-30 h p.i. and that budding started 6-8 h later. Colloidal gold particles, used to visualize the Gag protein, were first scattered randomly throughout the cytoplasm, but soon clusters representing 100 to 1000 copies of pr55gag were also observed. By contrast, in cells with budding or released virus-like particles the cytoplasm was virtually free of gold particles while the released virus-like particles were heavily labeled. Statistical analysis showed that between 80 and 90% of the gold particles in the cytoplasm were seen as singles, as doublets, or in small groups of up to five particles probably representing small oligomers. Clusters of gold particles were also observed in acutely infected lymphocytes as well as in multinuclear cells of chronically infected cultures of T4 cells. In a few cases small aggregates of gold particles were found in the nuclei of T4 lymphocytes. These observations suggest that the Gag polyprotein forms small oligomers in the cytoplasm of expressing cells but that assembly into multimeric complexes takes place predominantly at the plasma membrane. Large accumulations of Gag protein in the cytoplasm may represent misfolded molecules destined for degradation.
Resumo:
Three new supramolecular assemblies of co-crystallized metal complexes and aliphatic dicarboxylic acids, {[Cu(pic)(2)(H2O)(2)](H(2)mal)}(n) (1), {[Cu(pic)(2)(H2O)(2)](H(2)mal)(2)(H2O)(2)}(n) (2) and {[Cu(pic)(2)(MeOH)](H(2)succ)}(n) (3) {Hpic = 2-picolinic acid, H(2)mal = malonic acid and H(2)succ = succinic acid} have been synthesized and characterized by X-ray single-crystal structure determination. The crystal packings of the complexes reveal that supramolecular associations of the monomeric complex units lead to the formation of layers through hydrogen bonding. In all the complexes, the dicarboxylic acid units connect the 2-D layers to act as pillars. The interaction between water molecules and the dicarboxylic acid plays an important role in the overall supramolecular assembly. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
There has been great interest recently in peptide amphiphiles and block copolymers containing biomimetic peptide sequences due to applications in bionanotechnology. We investigate the self-assembly of the peptide-PEG amphiphile FFFF-PEG5000 containing the hydrophobic sequence of four phenylalanine residues conjugated to PEG of molar mass 5000. This serves as a simple model peptide amphiphile. At very low concentration, association of hydrophobic aromatic phenylalanine residues occurs, as revealed by circular dichroism and UV/vis fluorescence experiments. A critical aggregation concentration associated with the formation of hydrophobic domains is determined through pyrene fluorescence assays. At higher concentration, defined beta-sheets develop as revealed by FTIR spectroscopy and X-ray diffraction. Transmission electron microscopy reveals self-assembled straight fibril structures. These are much shorter than those observed for amyloid peptides, the finite length may be set by the end cap energy due to the hydrophobicity of phenylalanine. The combination of these techniques points to different aggregation processes depending on concentration. Hydrophobic association into irregular aggregates occurs at low concentration, well-developed beta-sheets only developing at higher concentration. Drying of FFFF-PEG5000 solutions leads to crystallization of PEG, as confirmed by polarized optical microscopy (POM), FTIR and X-ray diffraction (XRD). PEG crystallization does not disrupt local beta-sheet structure (as indicated by FTIR and XRD). However on longer lengthscales the beta-sheet fibrillar structure is perturbed because spheruilites from PEG crystallization are observed by POM. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The self-assembly in films dried from aqueous solutions of a modified amyloid beta peptide fragment is studied. We focus on sequence A beta(16-20), KLVFF, extended by two alanines at the N-terminus to give AAKLVFF. Self-assembly into twisted ribbon fibrils is observed, as confirmed by transmission electron microscopy (TEM). Dynamic light scattering reveals the semi-flexible nature of the AAKLVFF fibrils, while polarized optical microscopy shows that the peptide fibrils crystallize after an aqueous solution of AAKLVFF is matured over 5 days. The secondary structure of the fibrils is studied by FT-IR, circular dichroism and X-ray diffraction (XRD), which provide evidence for beta-sheet structure in the fibril. From high resolution TEM it is concluded that the average width of an AAKLVFF fibril is (63 +/- 18) nm, indicating that these fibrils comprise beta-sheets with multiple repeats of the unit cell, determined by XRD to have b and c dimensions 1.9 and 4.4 nm with an a axis 0.96 nm, corresponding to twice the peptide backbone spacing in the antiparallel beta-sheet. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The solvent-induced transition between self-assembled structures formed by the peptide AAKLVFF is studied via electron microscopy, light scattering, and spectroscopic techniques. The peptide is based on a core fragment of the amyloid beta-peptide, KLVFF, extended by two alanine residues. AAKLVFF exhibits distinct structures of twisted fibrils in water or nanotubes in methanol. For intermediate water/methanol compositions, these structures are disrupted and replaced by wide filamentous tapes that appear to be lateral aggregates of thin protofilaments. The orientation of the beta-strands in the twisted tapes or nanotubes can be deduced from X-ray diffraction on aligned stalks, as well as FT-IR experiments in transmission compared to attenuated total reflection. Strands are aligned perpendicular to the axis of the twisted fibrils or the nanotubes. The results are interpreted in light of recent results on the effect of competitive hydrogen bonding upon self-assembly in soft materials in water/methanol mixtures.
Resumo:
The linking of orthopalladated ferrocenylene units by parabanato(2-) ligands results in enantiospecific assembly of a hexanuclear complex in which (i) the steric bulk of the ferrocenylene moiety, (ii) the folded configuration dictated by the imidato(2-) bridging ligand, and (iii) the strong preference for a trans arrangement of the carbonyl oxygen and ferrocenyl carbon atoms, combine to ensure that only ferrocenylene-palladium units with the same chirality can be located at adjacent positions in the assembled complex. The resulting tris-parabanato(2-)-bridged, hexapalladium complex is thus homochiral (R,R,R,R,R,R or S,S,S,S,S,S), as demonstrated by H-1 NMR spectroscopy and by X-ray analysis of a racemic crystal which shows the complex to possess a tapering, twisted, trigonal-prismatic skeleton of palladium atoms with threefold crystallographic symmetry. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
The terminally protected tripeptide Boc-Ala(1)-Leu(2)-Ala(3)-OMe 1 forms antiparallel hydrogen-bonded dimers of two different conformers in the asymmetric unit and the individual dimers then self-associate to form supramolecular beta-sheet structures in crystals and amyloid-like fibrils in the solid state.
Resumo:
Single crystal X-ray diffraction studies show that the extended structure of dipeptide I Boc-beta-Ala-m-ABA-OMe (m-ABA: meta-aminobenzoic acid) self-assembles in the solid state by intermolecular hydrogen bonding to create an infinite parallel P-sheet structure. In dipeptide II Boc-gamma-Abu-m-ABA-OMe (gamma-Abu: gamma-aminobutyric acid), two such parallel beta-sheets are further cross-linked by intermolecular hydrogen bonding through m-aminobenzoic acid moieties. SEM (scanning electron microscopy) studies reveal that both the peptides I and II form amyloid-like fibrils in the solid state. The fibrils are also found to be stained readily by Congo red, a characteristic feature of the amyloid fiber whose accumulation causes several fatal diseases such as Alzheimer's, prion-protein etc.