17 resultados para Phase change films


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sea surface temperature (SST) datasets have been generated from satellite observations for the period 1991–2010, intended for use in climate science applications. Attributes of the datasets specifically relevant to climate applications are: first, independence from in situ observations; second, effort to ensure homogeneity and stability through the time-series; third, context-specific uncertainty estimates attached to each SST value; and, fourth, provision of estimates of both skin SST (the fundamental measure- ment, relevant to air-sea fluxes) and SST at standard depth and local time (partly model mediated, enabling comparison with his- torical in situ datasets). These attributes in part reflect requirements solicited from climate data users prior to and during the project. Datasets consisting of SSTs on satellite swaths are derived from the Along-Track Scanning Radiometers (ATSRs) and Advanced Very High Resolution Radiometers (AVHRRs). These are then used as sole SST inputs to a daily, spatially complete, analysis SST product, with a latitude-longitude resolution of 0.05°C and good discrimination of ocean surface thermal features. A product user guide is available, linking to reports describing the datasets’ algorithmic basis, validation results, format, uncer- tainty information and experimental use in trial climate applications. Future versions of the datasets will span at least 1982–2015, better addressing the need in many climate applications for stable records of global SST that are at least 30 years in length.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lipid cubic phase films are of increasingly widespread importance, both in the analysis of the cubic phases themselves by techniques including microscopy and X-ray scattering, and in their applications, especially as electrode coatings for electrochemical sensors and for templates for the electrodeposition of nanostructured metal. In this work we demonstrate that the crystallographic orientation adopted by these films is governed by minimization of interfacial energy. This is shown by the agreement between experimental data obtained using grazing-incidence small-angle X-ray scattering (GI-SAXS), and the predicted lowest energy orientation determined using a theoretical approach we have recently developed. GI-SAXS data show a high degree of orientation for films of both the double diamond phase and the gyroid phase, with the [111] and [110] directions respectively perpendicular to the planar substrate. In each case, this matches the lowest energy facet calculated for that particular phase.