47 resultados para Phase II
Resumo:
This paper, the second in a series of three papers concerned with the statistical aspects of interim analyses in clinical trials, is concerned with stopping rules in phase II clinical trials. Phase II trials are generally small-scale studies, and may include one or more experimental treatments with or without a control. A common feature is that the results primarily determine the course of further clinical evaluation of a treatment rather than providing definitive evidence of treatment efficacy. This means that there is more flexibility available in the design and analysis of such studies than in phase III trials. This has led to a range of different approaches being taken to the statistical design of stopping rules for such trials. This paper briefly describes and compares the different approaches. In most cases the stopping rules can be described and implemented easily without knowledge of the detailed statistical and computational methods used to obtain the rules.
Resumo:
The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. We also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.
Resumo:
Most statistical methodology for phase III clinical trials focuses on the comparison of a single experimental treatment with a control. An increasing desire to reduce the time before regulatory approval of a new drug is sought has led to development of two-stage or sequential designs for trials that combine the definitive analysis associated with phase III with the treatment selection element of a phase II study. In this paper we consider a trial in which the most promising of a number of experimental treatments is selected at the first interim analysis. This considerably reduces the computational load associated with the construction of stopping boundaries compared to the approach proposed by Follman, Proschan and Geller (Biometrics 1994; 50: 325-336). The computational requirement does not exceed that for the sequential comparison of a single experimental treatment with a control. Existing methods are extended in two ways. First, the use of the efficient score as a test statistic makes the analysis of binary, normal or failure-time data, as well as adjustment for covariates or stratification straightforward. Second, the question of trial power is also considered, enabling the determination of sample size required to give specified power. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
center dot Background and Aims The control of dormancy in yam (Disocorea spp.) tubers is poorly understood and attempts to shorten the long dormant period (i.e. cause tubers to sprout or germinate much earlier) have been unsuccessful. The aim of this study was to identify and define the phases of dormancy in Dioscorea rotundata tubers, and to produce a framework within which dormancy can be more effectively studied. center dot Methods Plants of 'TDr 131' derived from tissue culture were grown in a glasshouse simulating temperature and photoperiod at Ibadan (7 degrees N), Nigeria to produce tubers. Tubers were sampled on four occasions: 30 d before shoot senescence (149 days after planting, DAP), at shoot senescence (179 DAP), and twice during storage at a constant 25 degrees C (269 and 326 DAP). The development of the apical shoot bud was described from tissue sections. In addition, the responsiveness of shoot apical bud development to plant growth regulators (gibberellic acid, 2-chloroethanol and thiourea) applied to excised tuber sections was also examined 6 and 12 d after treatment. center dot Key Results and Conclusions Three phases of tuber dormancy are proposed: Phase I, from tuber initiation to the appearance of the tuber germinating meristem; Phase II, from the tuber germinating meristem to initiation of foliar primordium; and Phase III, from foliar primordium to appearance of the shoot bud on the surface of the tuber. Phase I is the longest phase (approx. 220 d in 'TDr 131'), is not affected by PGRs and is proposed to be an endo-dormant phase. Phases II and III are shorter (< 70 d in total), are influenced by PGRs and environmental conditions, and are therefore endo-/eco-dormant phases. To manipulate dormancy to allow off-season planting and more than one generation per year requires that the duration of Phase I is shortened.
Resumo:
Background: The objective was to evaluate the efficacy and tolerability of donepezil (5 and 10 mg/day) compared with placebo in alleviating manifestations of mild to moderate Alzheimer's disease (AD). Method: A systematic review of individual patient data from Phase II and III double-blind, randomised, placebo-controlled studies of up to 24 weeks and completed by 20 December 1999. The main outcome measures were the ADAS-cog, the CIBIC-plus, and reports of adverse events. Results: A total of 2376 patients from ten trials were randomised to either donepezil 5 mg/day (n = 821), 10 mg/day (n = 662) or placebo (n = 893). Cognitive performance was better in patients receiving donepezil than in patients receiving placebo. At 12 weeks the differences in ADAS-cog scores were 5 mg/day-placebo: - 2.1 [95% confidence interval (CI), - 2.6 to - 1.6; p < 0.001], 10 mg/day-placebo: - 2.5 ( - 3.1 to - 2.0; p < 0.001). The corresponding results at 24 weeks were - 2.0 ( - 2.7 to - 1.3; p < 0.001) and - 3.1 ( - 3.9 to - 2.4; p < 0.001). The difference between the 5 and 10 mg/day doses was significant at 24 weeks (p = 0.005). The odds ratios (OR) of improvement on the CIBIC-plus at 12 weeks were: 5 mg/day-placebo 1.8 (1.5 to 2.1; p < 0.001), 10 mg/day-placebo 1.9 (1.5 to 2.4; p < 0.001). The corresponding values at 24 weeks were 1.9 (1.5 to 2.4; p = 0.001) and 2.1 (1.6 to 2.8; p < 0.001). Donepezil was well tolerated; adverse events were cholinergic in nature and generally of mild severity and brief in duration. Conclusion: Donepezil (5 and 10 mg/day) provides meaningful benefits in alleviating deficits in cognitive and clinician-rated global function in AD patients relative to placebo. Increased improvements in cognition were indicated for the higher dose. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
Two-stage designs offer substantial advantages for early phase II studies. The interim analysis following the first stage allows the study to he stopped for futility, or more positively, it might lead to early progression to the trials needed for late phase H and phase III. If the study is to continue to its second stage, then there is an opportunity for a revision of the total sample size. Two-stage designs have been implemented widely in oncology studies in which there is a single treatment arm and patient responses are binary. In this paper the case of two-arm comparative studies in which responses are quantitative is considered. This setting is common in therapeutic areas other than oncology. It will be assumed that observations are normally distributed, but that there is some doubt concerning their standard deviation, motivating the need for sample size review. The work reported has been motivated by a study in diabetic neuropathic pain, and the development of the design for that trial is described in detail. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Background and Aims The control of dormancy in yam (Disocorea spp.) tubers is poorly understood and attempts to shorten the long dormant period (i.e. cause tubers to sprout or germinate much earlier) have been unsuccessful. The aim of this study was to identify and define the phases of dormancy in Dioscorea rotundata tubers, and to produce a framework within which dormancy can be more effectively studied. center dot Methods Plants of 'TDr 131' derived from tissue culture were grown in a glasshouse simulating temperature and photoperiod at Ibadan (7 degrees N), Nigeria to produce tubers. Tubers were sampled on four occasions: 30 d before shoot senescence (149 days after planting, DAP), at shoot senescence (179 DAP), and twice during storage at a constant 25 degrees C (269 and 326 DAP). The development of the apical shoot bud was described from tissue sections. In addition, the responsiveness of shoot apical bud development to plant growth regulators (gibberellic acid, 2-chloroethanol and thiourea) applied to excised tuber sections was also examined 6 and 12 d after treatment. center dot Key Results and Conclusions Three phases of tuber dormancy are proposed: Phase I, from tuber initiation to the appearance of the tuber germinating meristem; Phase II, from the tuber germinating meristem to initiation of foliar primordium; and Phase III, from foliar primordium to appearance of the shoot bud on the surface of the tuber. Phase I is the longest phase (approx. 220 d in 'TDr 131'), is not affected by PGRs and is proposed to be an endo-dormant phase. Phases II and III are shorter (< 70 d in total), are influenced by PGRs and environmental conditions, and are therefore endo-/eco-dormant phases. To manipulate dormancy to allow off-season planting and more than one generation per year requires that the duration of Phase I is shortened.
Resumo:
The phase diagram of cyclopentane has been studied by powder neutron diffraction, providing diffraction patterns for phases I, II, and III, over a range of temperatures and pressures. The putative phase IV was not observed. The structure of the ordered phase III has been solved by single-crystal diffraction. Computational modeling reveals that there are many equienergetic ordered structures for cyclopentane within a small energy range. Molecular dynamics simulations reproduce the structures and diffraction patterns for phases I and III and also show an intermediate disordered phase, which is used to interpret phase II.
Resumo:
Epidemiological studies indicate that consumption of cruciferous vegetables (CV) can reduce the risk of cancer. Supposed mechanisms are partly the inhibition of phase I and the induction of phase II enzymes. The aim of this study was to investigate in vitro and in vivo effects of watercress (WC), a member of the CV family, on chemopreventive parameters using human peripheral blood mononuclear cells (PBMC) as surrogate cells. We investigated the hypothesis that WC reduces cancer risk by inducing detoxification enzymes in a genotype-dependent manner. In vitro gene expression and enzyme activity experiments used PBMC incubated with a crude extract from fresh watercress (WCE, 0.1-10 mu L/mL with 8.2 g WC per 1 mL extract) or with one main key compound phenethyl isothiocyanate (PEITC, 1-10 mu M). From an in vivo perspective, gene expression and glutathione S-transferase (GST) polymorphisms were determined in PBMC obtained from a human intervention study in which subjects consumed 85 g WC per day for 8 weeks. The influence of WC consumption on gene expression was determined for detoxification enzymes such as superoxide dismutase 2 (SOD2) and glutathione peroxidase 1 (GPX1), whilst the SOD and GPX activities in red blood cells were also analysed with respect to GST genotypes. In vitro exposure of PBMC to WCE or PEITC (24 h) increased gene expression for both detoxification enzymes GPX1 (5.5-fold, 1 mu L/mL WCE, 3.7-fold 1 mu M PEITC) and SOD2 (12.1-fold, 10 mu L/mL WCE, 7.3-fold, 10 mu M PEITC), and increased SOD2 activity (1.9-fold, 10 mu L/mL WCE). The WC intervention had no significant effect on in vivo PBMC gene expression, as high individual variations were observed. However, a small but significant increase in GPX (p = 0.025) and SOD enzyme activity (p = 0.054) in red blood cells was observed in GSTM1*0, but not in GSTM1*1 individuals, whilst the GSTT1 genotype had no impact. The results indicate that WC is able to modulate the enzymes SOD and GPX in blood cells in vitro and in vivo, and suggest that the capacity of moderate intake of CV to induce detoxification is dependent in part on the GSTM1 genotype.
Resumo:
ReGen Therapeutics is developing Colostrinin, a polypeptide complex derived from ovine colostrums, for the potential treatment of Alzheimer's disease. The compound is currently undergoing phase II clinical trials.
Resumo:
There is considerable interest in the bioavailability of flavan-3-ols such as tea catechins and their bioactivity in vivo. Although flavanols such as catechin and epicatechin have long been characterized as powerful antioxidants in vitro, evidence suggests that these compounds undergo significant metabolism and conjugation during absorption in the small intestine and in the colon. In the small intestine these modifications lead primarily to the formation of glucuronide conjugates that are more polar than the parent flavanol and are marked for renal excretion. Other phase II processes lead to the production of O-methylated forms that have reduced antioxidant potential via the methylation of the B-ring catechol. Significant modification of flavanols also occurs in the colon where the resident microflora degrade them to smaller phenolic acids, some of which may be absorbed. Cell, animal and human studies have confirmed such metabolism by the detection of flavanol metabolites in the circulation and tissues. This review will highlight the major sites of flavanol metabolism in the gastrointestinal tract and the processes that give rise to potential bioactive forms of flavan-3-ols in vivo.
Resumo:
The beneficial effects of green tea catechins, such as the proposed improvement in endothelial function, may be influenced by phase II metabolism during and after absorption. The methylation enzyme, catechol-O-methyltransferase (COMT), has a missense mutation rs4680 (G to A), proposed to result in a 40 % reduction in enzyme activity. In the present pilot study, twenty subjects (ten of each homozygous COMT genotype) were recruited. Green tea extract capsules (836 mg green tea catechins) were given in a fasted state, and a high-carbohydrate breakfast was given after 60 min. Blood samples and vascular function measurements were taken at regular intervals. The change in digital volume pulse stiffness index (SI) from baseline was shown to be different between genotype groups at 120 and 240 min, with a lower SI in the GG individuals (P ≤ 0·044). The change in blood pressure from baseline also differed between genotype groups, with a greater increase in systolic (P = 0·023) and diastolic (P = 0·034) blood pressure at 120 min in the GG group. The AA group was shown to have a greater increase in insulin concentrations at 120 min (P = 0·019) and 180 min (P = 0·008) compared with baseline, despite similar glucose profiles. No genotypic differences were found in vascular reactivity measured using laser Doppler iontophoresis, total nitrite, lipids, plasma total antioxidant capacity or inflammatory markers after ingestion of the green tea extract. In conclusion, SI and insulin response to the glucose load differed between the COMT genotype groups, and this may be suggestive of a green tea extract and genotype interaction.
Resumo:
The pig is a single-stomached omnivorous mammal and is an important model of human disease and nutrition. As such, it is necessary to establish a metabolic framework from which pathology-based variation can be compared. Here, a combination of one and two-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy (NMR) and high-resolution magic angle spinning (HR-MAS) NMR was used to provide a systems overview of porcine metabolism via characterisation of the urine, serum, liver and kidney metabolomes. The metabolites observed in each of these biological compartments were found to be qualitatively comparable to the metabolic signature of the same biological matrices in humans and rodents. The data were modelled using a combination of principal components analysis and Venn diagram mapping. Urine represented the most metabolically distinct biological compartment studied, with a relatively greater number of NMR detectable metabolites present, many of which are implicated in gut-microbial co-metabolic processes. The major inter-species differences observed were in the phase II conjugation of extra-genomic metabolites; the pig was observed to conjugate p-cresol, a gut microbial metabolite of tyrosine, with glucuronide rather than sulfate as seen in man. These observations are important to note when considering the translatability of experimental data derived from porcine models.
Resumo:
Interdigestive intestinal motility, and especially phase III of the migrating myoelectric/motor complex (MMC), is responsible for intestinal clearance and plays an important role in prevention of bacterial overgrowth and translocation in the gut. Yet previous results from gnotobiotic rats have shown that intestinal microflora can themselves affect the characteristics of the myoelectric activity of the gut during the interdigestive state. Given that the composition of the intestinal microflora can be altered by dietary manipulations, we investigated the effect of supplementation of the diet with synbiotics on intestinal microflora structure and the duodenojejunal myoelectric activity in the rat. To reduce animal distress caused by restraint and handling, which can itself affect GI motility, we applied radiotelemetry for duodenojejunal EMG recordings in conscious, freely moving rats. Thirty 16-month-old Spraque-Dawley rats were used. The diet for 15 rats (E group) was supplemented with chicory inulin, Lactobacillus rhamnosus and Bifidobacterium lactis. The remaining 15 rats were fed control diet without supplements (C group). Three rats from each group were implanted with three bipolar electrodes positioned at 2, 14 and 28 cm distal to the pylorus. After recovery, two 6 h recordings of duodenojejunal EMG were carried out on each operated rat. Subsequently, group C rats received feed supplements and group E rats received only control diet for 1 week, and an additional two 6 h recordings were carried out on each of these rats. Non-operated C and E rats were killed and samples of GI tract were collected for microbiological analyses. Supplementation of the diet with the pro- and prebiotics mixture increased the number of bifidobacteria, whereas it decreased the number of enterobacteria in jejunum, ileum, caecum and colon. In both caecum and colon, the dietary supplementation increased the number of total anaerobes and lactobacilli. Treatment with synbiotics increased occurrence of phase III of the MMC at all three levels of the small intestine. The propagation velocity of phase III in the whole recording segment was also increased from 3.7 +/- 0.2 to 4.4 +/- 0.2 cm min(-1) by dietary treatment. Treatment with synbiotics increased the frequency of response potentials of the propagated phase III of the MMC at both levels of the jejunum, but not in the duodenum. In both parts of the jejunum, the supplementation of the diet significantly decreased the duration of phase II of the MMC, while it did not change the duration of phase I and phase III. Using the telemetry technique it was demonstrated that changes in the gastrointestinal microflora exhibited an intestinal motility response and, more importantly, that such changes can be initiated by the addition of synbiotics to the diet.
Resumo:
The pig is a single-stomached omnivorous mammal and is an important model of human disease and nutrition. As such, it is necessary to establish a metabolic framework from which pathology-based variation can be compared. Here, a combination of one and two-dimensional 1H and 13C nuclear magnetic resonance spectroscopy (NMR) and high-resolution magic angle spinning (HR-MAS) NMR was used to provide a systems overview of porcine metabolism via characterisation of the urine, serum, liver and kidney metabolomes. The metabolites observed in each of these biological compartments were found to be qualitatively comparable to the metabolic signature of the same biological matrices in humans and rodents. The data were modelled using a combination of principal components analysis and Venn diagram mapping. Urine represented the most metabolically distinct biological compartment studied, with a relatively greater number of NMR detectable metabolites present, many of which are implicated in gut-microbial co-metabolic processes. The major interspecies differences observed were in the phase II conjugation of extra-genomic metabolites; the pig was observed to conjugate p-cresol, a gut microbial metabolite of tyrosine, with glucuronide rather than sulfate as seen in man. These observations are important to note when considering the translatability of experimental data derived from porcine models.