40 resultados para Pesticide Residues
Resumo:
Two dipeptides containing an N-terminally positioned omega-amino acid residue (beta-alanine/delta-amino valeric acid) self-assembles to form nanotubes in the solid state as well as in aqueous solution. In spite of having hollow nanotubular structures in the solid state and in solution, their self-assembling nature in these two states are different and this leads to the formation of different internal diameters of these nanotubes in solution and in solid state structure. These nanotubes are stable proteolytically, thermally, and over a wide range of pH values (1-13). The role of water molecules in nanotube formation has been investigated in the solid state. These nanotubes can be considered as a new class of dipeptide nanotubes as they are consisting of N-terminally located protease resistant omega-amino acid residues and C-terminally positioned alpha-amino acid residues. These dipeptides can form an interesting class of short peptidic structure that can give rise to stable nanotubular structure upon self-assembly and these nanotubes can be explored in future for potential nanotechnological applications.
Resumo:
A critical analysis of single crystal X-ray diffraction studies on a series of terminally protected tripeptides containing a centrally positioned Aib (alpha-aminoisobutyric acid) residue has been reported. For the tripeptide series containing Boc-Ala-Aib as corner residues, all the reported peptides formed distorted type II beta-turn structures. Moreover, a series of Phe substituted analogues ( tripeptides with Boc-Phe-Aib) have also shown different beta-turn conformations. However, the Leu-modified analogues (tripeptides with Boc-Leu-Aib) disrupt the concept of beta-turn formation and adopt various conformations in the solid state. X-ray crystallography sheds some light on the conformational heterogeneity at atomic resolution. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Terminally protected acyclic tripeptides containing tyrosine residues at both termini self-assemble into nanotubes in crystals through various non-covalent interactions including intermolecular hydrogen bonds. The nanotube has an average internal diameter of 5 angstrom (0.5 nm) and the tubular ensemble is developed through the hydrogen-bonded phenolic-OH side chains of tyrosine (Tyr) residues [Org. Lett. 2004, 6, 4463]. We have synthesized and studied several tripeptides 3-6 to probe the role of tyrosine residues in nanotube structure formation. These peptides either have only one Tyr residue at N- or C-termini or they have one or two terminally located phenylalanine (Phe) residues. These tripeptides failed to form any kind of nanotubular structure in the solid state. Single crystal X-ray diffraction studies of these peptides 3-6 clearly demonstrate that substitution of any one of the terminal Tyr residues in the Boc-Tyr-X-Tyr-OMe (X=VaI or Ile) sequence disrupts the formation of the nanotubular structure indicating that the presence of two terminally located Tyr residues is vital for nanotube formation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The analysis of organic residues from pottery sherds using Gas-Chromatography with mass-spectroscopy (GC-MS) has revealed information about the variety of foods eaten and domestic routine at Silchester between the second and fourth–sixth centuries A.D. Two results are discussed in detail: those of a second-century Gauloise-type amphora and a fourth-century SE Dorset black-burnished ware (BB1) cooking pot, which reveal the use of pine pitch on the inner surface of the amphora and the use of animal fats (ruminant adipose fats) and leafy vegetables in cooking at the Roman town of Silchester, Hants.
Resumo:
The total phenol and anthocyanin contents of black currant pomace and black currant press residue (BPR) extracts, extracted with formic acid in methanol or with methanol/water/acetic acid, were studied. Anthocyanins and other phenols were identified by means of reversed phase HPLC, and differences between the two plant materials were monitored. In all BPR extracts, phenol levels, determined by the Folin-Ciocalteu method, were 8-9 times higher than in the pomace extracts. Acid hydrolysis liberated a much higher concentration of phenols from the pomace than from the black currant press residue. HPLC analysis revealed that delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside were the major anthocyanins and constituted the main phenol class (approximate to 90%) in both types of black currant tissues tested. However, anthocyanins were present in considerably lower amounts in the pomace than in the BPR. In accordance with the total phenol content, the antioxidant activity determined by scavenging of 2,2'-azinobis(3-ethylbenzothiazoline-6- sulfonic acid) radical cation, the ABTS(center dot+) assay, showed that BPR extracts prepared by solvent extraction exhibited significantly higher (7-10 times) radical scavenging activity than the pomace extracts, and BPR anthocyanins contributed significantly (74 and 77%) to the observed high radical scavenging capacity of the corresponding extracts.
Resumo:
The present paper investigates pesticide application types adopted by smallholder potato producers in the Department of Boyacá , Colombia. In this region, environmental, health and adverse economic effects due to pesticide mis- or over-use respectively have been observed. Firstly, pesticide application types were identified based on input-effectiveness. Secondly, their determinants of adoption were investigated. Finally suggestions were given to develop intervention options for transition towards a more sustainable pesticide use. Three application types were identified for fungicide and insecticide. The types differed in terms of input (intensity of pesticide application), effect (damage control), frequency of application, average quantity applied per application, chemical class, and productivity. Then, the determinants of different pesticide application types were investigated with a multinomial logistic regression approach and applying the integrative agent centred (IAC) framework. The area of the plot, attendance at training sessions and educational and income levels were among the most relevant determinants. The analysis suggested that better pesticide use could be fostered to reduce pesticide-related risks in the region. Intervention options were outlined, which may help in targeting this issue. They aim not only at educating farmers, but to change their social and institutional context, by involving other agents of the agricultural system (i.e. pesticide producers), facilitating new institutional settings (i.e. cooperatives) and targeting social dynamics (i.e. conformity to social norms).
Resumo:
Pesticide risk indicators provide simple support in the assessment of environmental and health risks from pesticide use, and can therefore inform policies to foster a sustainable interaction of agriculture with the environment. For their relative simplicity, indicators may be particularly useful under conditions of limited data availability and resources, such as in Less Developed Countries (LDCs). However, indicator complexity can vary significantly, in particular between those that rely on an exposure–toxicity ratio (ETR) and those that do not. In addition, pesticide risk indicators are usually developed for Western contexts, which might cause incorrect estimation in LDCs. This study investigated the appropriateness of seven pesticide risk indicators for use in LDCs, with reference to smallholding agriculture in Colombia. Seven farm-level indicators, among which 3 relied on an ETR (POCER, EPRIP, PIRI) and 4 on a non-ETR approach (EIQ, PestScreen, OHRI, Dosemeci et al., 2002), were calculated and then compared by means of the Spearman rank correlation test. Indicators were also compared with respect to key indicator characteristics, i.e. user friendliness and ability to represent the system under study. The comparison of the indicators in terms of the total environmental risk suggests that the indicators not relying on an ETR approach cannot be used as a reliable proxy for more complex, i.e. ETR, indicators. ETR indicators, when user-friendly, show a comparative advantage over non-ETR in best combining the need for a relatively simple tool to be used in contexts of limited data availability and resources, and for a reliable estimation of environmental risk. Non-ETR indicators remain useful and accessible tools to discriminate between different pesticides prior to application. Concerning the human health risk, simple algorithms seem more appropriate for assessing human health risk in LDCs. However, further research on health risk indicators and their validation under LDC conditions is needed.
Resumo:
The misuse of personal protective equipment (PPE) during pesticide application was investigated among smallholders in Colombia. The integrative agent-centered (IAC) framework and a logistic regression approach were adopted. The results suggest that the descriptive social norm was significantly influencing PPE use. The following were also important: (1) having experienced pesticide-related health problems; (2) age; (3) the share of pesticide application carried out; and (4) the perception of PPE hindering work. Interestingly, the influence of these factors differed for different pieces of PPE. Since conformity to the social norm is a source of rigidity in the system, behavioral change may take the form of a discontinuous transition. In conclusion, five suggestions for triggering a transition towards more sustainable PPE use are formulated: (1) diversifying targets/tools; (2) addressing structural aspects; (3) sustaining interventions in the long-term; (4) targeting farmers’ learning-by-experience; and (5) targeting PPE use on a collective level.
Resumo:
The misuse of Personal Protective Equipment results in health risk among smallholders in developing countries, and education is often proposed to promote safer practices. However, evidence point to limited effects of education. This paper presents a System Dynamics model which allows the identification of risk-minimizing policies for behavioural change. The model is based on the IAC framework and survey data. It represents farmers' decision-making from an agent-oriented standpoint. The most successful intervention strategy was the one which intervened in the long term, targeted key stocks in the systems and was diversified. However, the results suggest that, under these conditions, no policy is able to trigger a self sustaining behavioural change. Two implementation approaches were suggested by experts. One, based on constant social control, corresponds to a change of the current model's parameters. The other, based on participation, would lead farmers to new thinking, i.e. changes in their decision-making structure.
Resumo:
The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.
Resumo:
The membrane-bound form of mammalian aminopeptidase P (AP-P; EC 3.4. 11.9) is a mono-zinc-containing enzyme that lacks any of the typical metal binding motifs found in other zinc metalloproteases. To identify residues involved in metal binding and catalysis, sequence and structural information was used to align the sequence of porcine membrane-bound AP-P with other members of the peptidase clan MG, including Escherichia coli AP-P and methionyl aminopeptidases. Residues predicted to be critical for activity were mutated and the resultant proteins were expressed in COS-1 cells. Immunoelectrophoretic blot analysis was used to compare the levels of expression of the mutant proteins, and their ability to hydrolyze bradykinin and Gly-Pro-hydroxyPro was assessed. Asp449, Asp460, His523, Glu554, and Glu568 are predicted to serve as metal ion ligands in the active site, and mutagenesis of these residues resulted in fully glycosylated proteins that were catalytically inactive. Mutation of His429 and His532 also resulted in catalytically inactive proteins, and these residues, by analogy with E. coli AP-P, are likely to play a role in shuttling protons during catalysis. These studies indicate that mammalian membrane-bound AP-P has an active-site configuration similar to that of other members of the peptidase clan MG, which is compatible with either a dual metal ion model or a single metal ion in the active site. The latter model is consistent, however, with the known metal stoichiometry of both the membrane-bound and cytosolic forms of AP-P and with a recently proposed model for methionyl aminopeptidase.
Resumo:
Conditions of stress, such as myocardial infarction, stimulate up-regulation of heme oxygenase (HO-1) to provide cardioprotection. Here, we show that CO, a product of heme catabolism by HO-1, directly inhibits native rat cardiomyocyte L-type Ca2+ currents and the recombinant alpha1C subunit of the human cardiac L-type Ca2+ channel. CO (applied via a recognized CO donor molecule or as the dissolved gas) caused reversible, voltage-independent channel inhibition, which was dependent on the presence of a spliced insert in the cytoplasmic C-terminal region of the channel. Sequential molecular dissection and point mutagenesis identified three key cysteine residues within the proximal 31 amino acids of the splice insert required for CO sensitivity. CO-mediated inhibition was independent of nitric oxide and protein kinase G but was prevented by antioxidants and the reducing agent, dithiothreitol. Inhibition of NADPH oxidase and xanthine oxidase did not affect the inhibitory actions of CO. Instead, inhibitors of complex III (but not complex I) of the mitochondrial electron transport chain and a mitochondrially targeted antioxidant (Mito Q) fully prevented the effects of CO. Our data indicate that the cardioprotective effects of HO-1 activity may be attributable to an inhibitory action of CO on cardiac L-type Ca2+ channels. Inhibition arises from the ability of CO to promote generation of reactive oxygen species from complex III of mitochondria. This in turn leads to redox modulation of any or all of three critical cysteine residues in the channel's cytoplasmic C-terminal tail, resulting in channel inhibition.
Resumo:
The wood mouse is a common and abundant species in agricultural landscape and is a focal species in pesticide risk assessment. Empirical studies on the ecology of the wood mouse have provided sufficient information for the species to be modelled mechanistically. An individual-based model was constructed to explicitly represent the locations and movement patterns of individual mice. This together with the schedule of pesticide application allows prediction of the risk to the population from pesticide exposure. The model included life-history traits of wood mice as well as typical landscape dynamics in agricultural farmland in the UK. The model obtains a good fit to the available population data and is fit for risk assessment purposes. It can help identify spatio-temporal situations with the largest potential risk of exposure and enables extrapolation from individual-level endpoints to population-level effects. Largest risk of exposure to pesticides was found when good crop growth in the “sink” fields coincided with high “source” population densities in the hedgerows. Keywords: Population dynamics, Pesticides, Ecological risk assessment, Habitat choice, Agent-based model, NetLogo