45 resultados para Per unit length
Resumo:
Acrylamide forms from free asparagine and sugars during cooking, and products derived from the grain of cereals, including rye, contribute a large proportion of total dietary intake. In this study, free amino acid and sugar concentrations were measured in the grain of a range of rye varieties grown at locations in Hungary, France, Poland, and the United Kingdom and harvested in 2005, 2006, and 2007. Genetic and environmental (location and harvest year) effects on the levels of acrylamide precursors were assessed. The data showed free asparagine concentration to be the main determinant of acrylamide formation in heated rye flour, as it is in wheat. However, in contrast to wheat, sugar, particularly sucrose, concentration also correlated both with asparagine concentration and with acrylamide formed. Free asparagine concentration was shown to be under genetic (G), environmental (E), and integrated (G × E) control. The same was true for glucose, whereas maltose and fructose were affected mainly by environmental factors and sucrose was largely under genetic control. The ratio of variation due to varieties (genotype) to the total variation (a measure of heritability) for free asparagine concentration in the grain was 23%. Free asparagine concentration was closely associated with bran yield, whereas sugar concentration was associated with low Hagberg falling number. Rye grain was found to contain much higher concentrations of free proline than wheat grain, and less acrylamide formed per unit of asparagine in rye than in wheat flour.
Resumo:
Results from both experimental measurements and 3D numerical simulations of Ground Source Heat Pump systems (GSHP) at a UK climate are presented. Experimental measurements of a horizontal-coupled slinky GSHP were undertaken in Talbot Cottage at Drayton St Leonard site, Oxfordshire, UK. The measured thermophysical properties of in situ soil were used in the CFD model. The thermal performance of slinky heat exchangers for the horizontal-coupled GSHP system for different coil diameters and slinky interval distances was investigated using a validated 3D model. Results from a two month period of monitoring the performance of the GSHP system showed that the COP decreased with the running time. The average COP of the horizontal-coupled GSHP was 2.5. The numerical prediction showed that there was no significant difference in the specific heat extraction of the slinky heat exchanger at different coil diameters. However, the larger the diameter of coil, the higher the heat extraction per meter length of soil. The specific heat extraction also increased, but the heat extraction per meter length of soil decreased with the increase of coil central interval distance.
Resumo:
The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.
Resumo:
The effects of elevated CO2 on leaf development in three genotypes of Populus were investigated during canopy closure, following exposure to elevated CO2 over 3 yr using free-air enrichment.• Leaf quality was altered such that nitrogen concentration per unit d. wt (Nmass) declined on average by 22 and 13% for sun and shade leaves, respectively, in elevated CO2. There was little evidence that this was the result of ‘dilution’ following accumulation of nonstructural carbohydrates. Most likely, this was the result of increased leaf thickness. Specific leaf area declined in elevated CO2 on average by 29 and 5% for sun and shade leaves, respectively.• Autumnal senescence was delayed in elevated CO2 with a 10% increase in the number of days at which 50% leaf loss occurred in elevated as compared with ambient CO2.• These data suggest that changes in leaf quality may be predicted following long-term acclimation of fast-growing forest trees to elevated CO2, and that canopy longevity may increase, with important implications for forest productivity.
Resumo:
The photosynthetic characteristics of eight contrasting cocoa genotypes were studied with the aim of examining genotypic variation in maximum (light-saturated) photosynthetic rates, light-response curve parameters and water use efficiency. Photosynthetic traits were derived from single leaf gas exchange measurements using a portable infra-red gas analyser. All measurements were conducted in a common greenhouse environment. Significant variation was observed in light-saturated photosynthesis ranging from 3.4 to 5.7 µmol CO2 m-2 s-1 for the clones IMC 47 and SCA 6, respectively. Furthermore, analyses of photosynthetic light response curves indicated genotypic differences in light saturation point and quantum efficiency (i.e. the efficiency of light use). Stomatal conductance was a significant factor underlying genotypic differences in assimilation. Genotypic variation was also observed in a number of leaf traits, including specific leaf area (the ratio of leaf area to leaf weight), chlorophyll concentration and nitrogen content. There was a positive correlation between leaf nitrogen per unit area and light-saturated photosynthesis. Water use efficiency, defined as the ratio of photosynthetic rate to transpiration rate, also varied significantly between clones (ranging from 3.1 mmol mol-1 H2O for the clone IMC 47 to 4.2 mmol mol-1 H2O for the clone ICS 1). Water use efficiency was a negative function of specific leaf area, suggesting that low specific leaf area might be a useful criterion for selection for increased water use efficiency. It is concluded that both variation in water use efficiency and the photosynthetic response to light have the potential to be exploited in breeding programmes.
Resumo:
Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.
Resumo:
The global temperature response to increasing atmospheric CO2 is often quantified by metrics such as equilibrium climate sensitivity and transient climate response1. These approaches, however, do not account for carbon cycle feedbacks and therefore do not fully represent the net response of the Earth system to anthropogenic CO2 emissions. Climate–carbon modelling experiments have shown that: (1) the warming per unit CO2 emitted does not depend on the background CO2 concentration2; (2) the total allowable emissions for climate stabilization do not depend on the timing of those emissions3, 4, 5; and (3) the temperature response to a pulse of CO2 is approximately constant on timescales of decades to centuries3, 6, 7, 8. Here we generalize these results and show that the carbon–climate response (CCR), defined as the ratio of temperature change to cumulative carbon emissions, is approximately independent of both the atmospheric CO2 concentration and its rate of change on these timescales. From observational constraints, we estimate CCR to be in the range 1.0–2.1 °C per trillion tonnes of carbon (Tt C) emitted (5th to 95th percentiles), consistent with twenty-first-century CCR values simulated by climate–carbon models. Uncertainty in land-use CO2 emissions and aerosol forcing, however, means that higher observationally constrained values cannot be excluded. The CCR, when evaluated from climate–carbon models under idealized conditions, represents a simple yet robust metric for comparing models, which aggregates both climate feedbacks and carbon cycle feedbacks. CCR is also likely to be a useful concept for climate change mitigation and policy; by combining the uncertainties associated with climate sensitivity, carbon sinks and climate–carbon feedbacks into a single quantity, the CCR allows CO2-induced global mean temperature change to be inferred directly from cumulative carbon emissions.
Resumo:
Our differences are three. The first arises from the belief that "... a nonzero value for the optimally chosen policy instrument implies that the instrument is efficient for redistribution" (Alston, Smith, and Vercammen, p. 543, paragraph 3). Consider the two equations: (1) o* = f(P3) and (2) = -f(3) ++r h* (a, P3) representing the solution to the problem of maximizing weighted, Marshallian surplus using, simultaneously, a per-unit border intervention, 9, and a per-unit domestic intervention, wr. In the solution, parameter ot denotes the weight applied to producer surplus; parameter p denotes the weight applied to government revenues; consumer surplus is implicitly weighted one; and the country in question is small in the sense that it is unable to affect world price by any of its domestic adjustments (see the Appendix). Details of the forms of the functions f((P) and h(ot, p) are easily derived, but what matters in the context of Alston, Smith, and Vercammen's Comment is: Redistributivep referencest hatf avorp roducers are consistent with higher values "alpha," and whereas the optimal domestic intervention, 7r*, has both "alpha and beta effects," the optimal border intervention, r*, has only a "beta effect,"-it does not have a redistributional role. Garth Holloway is reader in agricultural economics and statistics, Department of Agricultural and Food Economics, School of Agriculture, Policy, and Development, University of Reading. The author is very grateful to Xavier Irz, Bhavani Shankar, Chittur Srinivasan, Colin Thirtle, and Richard Tiffin for their comments and their wisdom; and to Mario Mazzochi, Marinos Tsigas, and Cal Turvey for their scholarship, including help in tracking down a fairly complete collection of the papers that cite Alston and Hurd. They are not responsible for any errors or omissions. Note, in equation (1), that the border intervention is positive whenever a distortion exists because 8 > 0 implies 3 - 1 + 8 > 1 and, thus, f((P) > 0 (see Appendix). Using Alston, Smith, and Vercammen's definition, the instrument is now "efficient," and therefore has a redistributive role. But now, suppose that the distortion is removed so that 3 - 1 + 8 = 1, 8 = 0, and consequently the border intervention is zero. According to Alston, Smith, and Vercammen, the instrument is now "inefficient" and has no redistributive role. The reader will note that this thought experiment has said nothing about supporting farm incomes, and so has nothing whatsoever to do with efficient redistribution. Of course, the definition is false. It follows that a domestic distortion arising from the "excess-burden argument" 3 = 1 + 8, 8 > 0 does not make an export subsidy "efficient." The export subsidy, having only a "beta effect," does not have a redistributional role. The second disagreement emerges from the comment that Holloway "... uses an idiosyncratic definition of the relevant objective function of the government (Alston, Smith, and Vercammen, p. 543, paragraph 2)." The objective function that generates equations (1) and (2) (see the Appendix) is the same as the objective function used by Gardner (1995) when he first questioned Alston, Carter, and Smith's claim that a "domestic distortion can make a border intervention efficient in transferring surplus from consumers and taxpayers to farmers." The objective function used by Gardner (1995) is the same objective function used in the contributions that precede it and thus defines the literature on the debate about borderversus- domestic intervention (Streeten; Yeh; Paarlberg 1984, 1985; Orden; Gardner 1985). The objective function in the latter literature is the same as the one implied in another literature that originates from Wallace and includes most notably Gardner (1983), but also Alston and Hurd. Amer. J. Agr. Econ. 86(2) (May 2004): 549-552 Copyright 2004 American Agricultural Economics Association This content downloaded on Tue, 15 Jan 2013 07:58:41 AM All use subject to JSTOR Terms and Conditions 550 May 2004 Amer. J. Agr. Econ. The objective function in Holloway is this same objective function-it is, of course, Marshallian surplus.1 The third disagreement concerns scholarship. The Comment does not seem to be cognizant of several important papers, especially Bhagwati and Ramaswami, and Bhagwati, both of which precede Corden (1974, 1997); but also Lipsey and Lancaster, and Moschini and Sckokai; one important aspect of Alston and Hurd; and one extremely important result in Holloway. This oversight has some unfortunate repercussions. First, it misdirects to the wrong origins of intellectual property. Second, it misleads about the appropriateness of some welfare calculations. Third, it prevents Alston, Smith, and Vercammen from linking a finding in Holloway (pp. 242-43) with an old theorem (Lipsey and Lancaster) that settles the controversy (Alston, Carter, and Smith 1993, 1995; Gardner 1995; and, presently, Alston, Smith, and Vercammen) about the efficiency of border intervention in the presence of domestic distortions.
Resumo:
Radiative forcing is a useful tool for predicting equilibrium global temperature change. However, it is not so useful for predicting global precipitation changes, as changes in precipitation strongly depend on the climate change mechanism and how it perturbs the atmospheric and surface energy budgets. Here a suite of climate model experiments and radiative transfer calculations are used to quantify and assess this dependency across a range of climate change mechanisms. It is shown that the precipitation response can be split into two parts: a fast atmospheric response that strongly correlates with the atmospheric component of radiative forcing, and a slower response to global surface temperature change that is independent of the climate change mechanism, ∼2-3% per unit of global surface temperature change. We highlight the precipitation response to black carbon aerosol forcing as falling within this range despite having an equilibrium response that is of opposite sign to the radiative forcing and global temperature change.
Resumo:
The surfactant-like peptide (Ala)6(Arg) is found to self-assemble into 3 nm-thick sheets in aqueous solution. Scanning transmission electron microscopy measurements of mass per unit area indicate a layer structure based on antiparallel dimers. At higher concentration the sheets wrap into unprecedented ultrathin helical ribbon and nanotube architectures.
Resumo:
Soils most obviously contribute to food security in their essential role in crop and fodder production, so affecting the local availability of particular foods. They also have a direct influence on the ability to distribute food, the nutritional value of some foods and, in some societies, the access to certain foods through local processes of allocation and preferences. The inherent fertility of some soils is greater than that of others, so that crop yields vary greatly under semi-natural conditions. Husbandry practices, including the use of manures and fertilisers, have evolved to improve biological, chemical and physical components of soil fertility and thereby increase crop production. The challenge for the future is to sustain soil fertility in ways that increase the yield per unit area while simultaneously avoiding other detrimental environmental consequences. This will require increased effort to develop practices that use inputs such as nutrients, water and energy more efficiently. Opportunities to achieve this include adopting more effective ways to apply water and nutrients, adopting tillage practices that promote water infiltration and increase of organic matter, and breeding to improve the effectiveness of root systems in utilising soil-based resources.
Resumo:
In the recent past there was a widespread working assumption in many countries that problems of food production had been solved, and that food security was largely a matter of distribution and access to be achieved principally by open markets. The events of 2008 challenged these assumptions, and made public a much wider debate about the costs of current food production practices to the environment and whether these could be sustained. As in the past 50 years, it is anticipated that future increases in crop production will be achieved largely by increasing yields per unit area rather than by increasing the area of cropped land. However, as yields have increased, so the ratio of photosynthetic energy captured to energy expended in crop production has decreased. This poses a considerable challenge: how to increase yield while simultaneously reducing energy consumption (allied to greenhouse gas emissions) and utilizing resources such as water and phosphate more efficiently. Given the timeframe in which the increased production has to be realized, most of the increase will need to come from crop genotypes that are being bred now, together with known agronomic and management practices that are currently under-developed.
Resumo:
The absorption coefficient of a substance distributed as discrete particles in suspension is less than that of the same material dissolved uniformly in a medium—a phenomenon commonly referred to as the flattening effect. The decrease in the absorption coefficient owing to flattening effect depends on the concentration of the absorbing pigment inside the particle, the specific absorption coefficient of the pigment within the particle, and on the diameter of the particle, if the particles are assumed to be spherical. For phytoplankton cells in the ocean, with diameters ranging from less than 1 µm to more than 100 µm, the flattening effect is variable, and sometimes pronounced, as has been well documented in the literature. Here, we demonstrate how the in vivo absorption coefficient of phytoplankton cells per unit concentration of its major pigment, chlorophyll a, can be used to determine the average cell size of the phytoplankton population. Sensitivity analyses are carried out to evaluate the errors in the estimated diameter owing to potential errors in the model assumptions. Cell sizes computed for field samples using the model are compared qualitatively with indirect estimates of size classes derived from high performance liquid chromatography data. Also, the results are compared quantitatively against measurements of cell size in laboratory cultures. The method developed is easy-to-apply as an operational tool for in situ observations, and has the potential for application to remote sensing of ocean colour data.
Resumo:
The leaf carbon isotope ratio (δ13C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ13C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ13C of species occupying adjacent ranges. The Northeast China Transect spans 130–900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ13C. The δ13C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ13C predicted N per unit leaf area (Narea) better than MI. The δ13C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.
Resumo:
This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates to an increasingly empirical basis using satellite observations coordinated with suborbital remote and in situ measurements and with chemical transport models. Conceptually, the problem is framed as a need for complete global mapping of four parameters: clear-sky aerosol optical depth δ, radiative efficiency per unit optical depth E, fine-mode fraction of optical depth ff, and the anthropogenic fraction of the fine mode faf. The first three parameters can be retrieved from satellites, but correlative, suborbital measurements are required for quantifying the aerosol properties that control E, for validating the retrieval of ff, and for partitioning fine-mode δ between natural and anthropogenic components. The satellite focus is on the “A-Train,” a constellation of six spacecraft that will fly in formation from about 2005 to 2008. Key satellite instruments for this report are the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) radiometers on Aqua, the Ozone Monitoring Instrument (OMI) radiometer on Aura, the Polarization and Directionality of Earth's Reflectances (POLDER) polarimeter on the Polarization and Anistropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL), and the Cloud and Aerosol Lider with Orthogonal Polarization (CALIOP) lidar on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). This strategy is offered as an initial framework—subject to improvement over time—for scientists around the world to participate in the A-Train opportunity. It is a specific implementation of the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) program, presented earlier in this journal, which identified the integration of diverse data as the central challenge to progress in quantifying global-scale aerosol effects. By designing a strategy around this need for integration, we develop recommendations for both satellite data interpretation and correlative suborbital activities that represent, in many respects, departures from current practice