20 resultados para Peptides MHC I
Resumo:
Small, synthetic peptides based on specific regions of voltage-gated Ca2+ channels (VGCCs) have been widely used to study Ca2+ channel function and have been instrumental in confirming the contribution of specific amino acid sequences to interactions with putative binding partners. In particular, peptides based on the Ca2+ channel Alpha Interaction Domain (AID) on the intracellular region connecting domains I and II (the I-II loop) and the SYNaptic PRotein INTerction (synprint) site on the II-III loop have been widely used. Emerging evidence suggests that such peptides may themselves possess inherent functionality, a property that may be exploitable for future drug design. Here, we review our recent work using synthetic Ca2+ channel peptides based on sequences within the CaV2.2 amino terminal and I-II loop, originally identified as molecular determinates for G protein modulation, and their effects on VGCC function. These CaV2.2 peptides act as inhibitory modules to decrease Ca2+ influx with direct effects on VGCC gating, ultimately leading to a reduction of synaptic transmission. CaV2.2 peptides also attenuate G protein modulation of VGCCs. Amino acid substitutions generate CaV2.2 peptides with increased or decreased inhibitory effects suggesting that synthetic peptides can be used to further probe VGCC function and, potentially, form the basis for novel therapeutic development.
Resumo:
The interfacial behavior of the model amyloid peptide octamer YYKLVFFC (peptide 1) and two other amyloid peptides YEVHHQKLVFF (peptide 2) and KKLVFFA (peptide 3) at the metal|aqueous solution interface was studied by voltammetric and constant current chronopotentiometric stripping (CPS). All three peptides are adsorbed in a wide potential range and exhibit different interfacial organizations depending on the electrode potential. At the least negative potentials, chemisorption of peptide 1 occurs through the formation of a metal sulfur bond. This bond is broken close to −0.6 V. The peptide undergoes self-association at more negative potentials, leading to the formation of a “pit” characteristic of a 2D condensed film. Under the same conditions the other peptides do not produce such a pit. Formation of the 2D condensed layer in peptide 1 is supported by the time, potential and temperature dependences of the interfacial capacity and it is shown that presence of the 2D layer is reflected by the peptide CPS signals due to the catalytic hydrogen evolution. The ability of peptide 1 to form the potential-dependent 2D condensed layer has been reported neither for any other peptide nor for any protein molecule. This ability might be related to the well-known oligomerization and aggregation of Alzheimer amyloid peptides.
Resumo:
CVD are the leading cause of death worldwide. Hypertension, a major controllable risk factor of CVD, is intimately associated with vascular dysfunction, a defect which is also now recognised to be a major, modifiable risk factor for the development of CVD. The purpose of the present review was to critically evaluate the evidence for the effects of milk proteins and their associated peptides on blood pressure (BP) and vascular dysfunction. After a detailed literature search, the number of human trials evaluating the antihypertensive effects of casein-derived peptides (excluding isoleucine-proline-proline and valine-proline-proline) was found to be limited; the studies were preliminary with substantial methodological limitations. Likewise, the data from human trials that examined the effects of whey protein and peptides were also scarce and inconsistent. To date, only one study has conducted a comparative investigation on the relative effects of the two main intact milk proteins on BP and vascular function. While both milk proteins were shown to reduce BP, only whey protein improved measures of arterial stiffness. In contrast, a growing number of human trials have produced evidence to support beneficial effects of both milk proteins and peptides on vascular health. However, comparison of the relative outcomes from these trials is difficult owing to variation in the forms of assessment and measures of vascular function. In conclusion, there is an accumulating body of evidence to support positive effects of milk proteins in improving and/or maintaining cardiovascular health. However, the variable quality of the studies that produced this evidence, and the lack of robust, randomised controlled intervention trials, undermines the formulation of firm conclusions on the potential benefits of milk proteins and peptides on vascular health.
Resumo:
The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined.
Resumo:
A general flow process for the multi-step assembly of peptides has been developed and this procedure has been used to successfully construct a series of Boc, Cbz and Fmoc N-protected dipeptides in excellent yields and purities, including an extension of the method to enable the preparation of a tripeptide derivative.