84 resultados para Peninsular Indian Rainfall
Resumo:
Changes in climate variability and, in particular, changes in extreme climate events are likely to be of far more significance for environmentally vulnerable regions than changes in the mean state. It is generally accepted that sea-surface temperatures (SSTs) play an important role in modulating rainfall variability. Consequently, SSTs can be prescribed in global and regional climate modelling in order to study the physical mechanisms behind rainfall and its extremes. Using a satellite-based daily rainfall historical data set, this paper describes the main patterns of rainfall variability over southern Africa, identifies the dates when extreme rainfall occurs within these patterns, and shows the effect of resolution in trying to identify the location and intensity of SST anomalies associated with these extremes in the Atlantic and southwest Indian Ocean. Derived from a Principal Component Analysis (PCA), the results also suggest that, for the spatial pattern accounting for the highest amount of variability, extremes extracted at a higher spatial resolution do give a clearer indication regarding the location and intensity of anomalous SST regions. As the amount of variability explained by each spatial pattern defined by the PCA decreases, it would appear that extremes extracted at a lower resolution give a clearer indication of anomalous SST regions.
Resumo:
We study the contemporaneous relationship between the intensity of the Indian Summer Monsoon (ISM) and runoff in the major rivers of the Aral Sea basin (Amudarya, Syrdarya) and some of their subcatchments. To this end, we use All-India rainfall (AIR) data, CRU surface observations of precipitation and temperature, ERA40 atmospheric data, and natural discharge data corrected for human interference. We show that there is a highly significant positive correlation between ISM intensity and Amudarya runoff. This finding cannot be explained by the spill-over of ISM precipitation over the Hindu Kush into the Amudarya basin. Instead, we suggest that the observed co-variability is mediated by tropospheric temperature variations due to fluctuations in the ISM intensity. These variations are known to be due to Rossby-wave propagation in response to condensational heating during monsoon precipitation. We hypothesise that the corresponding anomalies in surface temperatures imply anomalies in meltwater formation.
Resumo:
The synoptic evolution of three tropical–extratropical (TE) interactions, each responsible for extreme rainfall events over southern Africa, is discussed in detail. Along with the consideration of previously studied events, common features of these heavy rainfall producing tropical temperate troughs (TTTs) over southern Africa are discussed. It is found that 2 days prior to an event, northeasterly moisture transports across Botswana, set up by the Angola low, are diverted farther south into the semiarid region of subtropical southern Africa. The TTTs reach full maturity as a TE cloud band, rooted in the central subcontinent, which is triggered by upper-level divergence along the leading edge of an upper-tropospheric westerly wave trough. Convection and rainfall within the cloud band is supported by poleward moisture transports with subtropical air rising as it leaves the continent and joins the midlatitude westerly flow. It is shown that these systems fit within a theoretical framework describing similar TE interactions found globally. Uplift forcing for the extreme rainfall of each event is investigated. Unsurprisingly, quasigeostrophic uplift is found to dominate in the midlatitudes with convective processes strongest in the subtropics. Rainfall in the semiarid interior of South Africa appears to be a result of quasigeostrophically triggered convection. Investigation of TTT formation in the context of planetary waves shows that early development is sometimes associated with previous anticyclonic wave breaking south of the subcontinent, with full maturity of TTTs occurring as a potential vorticity trough approaches the continent from the west. Sensitivity to upstream wave perturbations and effects on anticyclonic wave breaking in the South Indian Ocean are also observed.
Resumo:
Postglacial expansion of deciduous oak woodlands of the Zagros—Anti-Taurus Mountains, a major biome of the Near East, was delayed until the middle Holocene at ~6300 cal. yr BP. The current hypotheses explain this delay as a consequence of a regional aridity during the early Holocene, slow migration rates of forest trees, and/or a long history of land use and agro-pastoralism in this region. In the present paper, support is given to a hypothesis that suggests different precipitation seasonalities during the early Holocene compared with the late Holocene. The oak species of the Zagros—Anti-Taurus Mts, particularly Quercus brantii Lindl., are strongly dependent on spring precipitation for regeneration and are sensitive to a long dry season. Detailed analysis of modern atmospheric circulation patterns in SW Asia during the late spring suggests that the Indian Summer Monsoon (ISM) intensification can modify the amount of late spring and/or early summer rainfall in western/northwestern Iran and eastern Anatolia, which could in turn have controlled the development of the Zagros—Anti-Taurus deciduous oak woodlands. During the early Holocene, the northwestward shift of the Inter-Tropical Convergence Zone (ITCZ) could have displaced the subtropical anticyclonic belt or associated high pressure ridges to the northwest. The latter could, in turn, have prevented the southeastward penetration of low pressure systems originating from the North Atlantic and Black Sea regions. Such atmospheric configuration could have reduced or eliminated the spring precipitation creating a typical Mediterranean continental climate characterized by winter-dominated precipitation. This scenario highlights the complexity of biome response to climate system interactions in transitional climatic and biogeographical regions.
Resumo:
Leading patterns of observed monthly extreme rainfall variability in Australia are examined using an Empirical Orthogonal Teleconnection (EOT) method. Extreme rainfall variability is more closely related to mean rainfall variability during austral summer than in winter. The leading EOT patterns of extreme rainfall explain less variance in Australia-wide extreme rainfall than is the case for mean rainfall EOTs. We illustrate that, as with mean rainfall, the El Niño-Southern Oscillation (ENSO) has the strongest association with warm-season extreme rainfall variability, while in the cool-season the primary drivers are atmospheric blocking and the subtropical ridge. The Indian Ocean Dipole and Southern Annular Mode also have significant relationships with patterns of variability during austral winter and spring. Leading patterns of summer extreme rainfall variability have predictability several months ahead from Pacific sea surface temperatures (SSTs) and as much as a year in advance from Indian Ocean SSTs. Predictability from the Pacific is greater for wetter than average summer months than for months that are drier than average, whereas for the Indian Ocean the relationship has greater linearity. Several cool-season EOTs are associated with mid-latitude synoptic-scale patterns along the south and east coasts. These patterns have common atmospheric signatures denoting moist onshore flow and strong cyclonic anomalies often to the north of a blocking anti-cyclone. Tropical cyclone activity is observed to have significant relationships with some warm season EOTs. This analysis shows that extreme rainfall variability in Australia can be related to remote drivers and local synoptic-scale patterns throughout the year.
Resumo:
The Indian monsoon is an important component of Earth's climate system, accurate forecasting of its mean rainfall being essential for regional food and water security. Accurate measurement of the rainfall is essential for various water-related applications, the evaluation of numerical models and detection and attribution of trends, but a variety of different gridded rainfall datasets are available for these purposes. In this study, six gridded rainfall datasets are compared against the India Meteorological Department (IMD) gridded rainfall dataset, chosen as the most representative of the observed system due to its high gauge density. The datasets comprise those based solely on rain gauge observations and those merging rain gauge data with satellite-derived products. Various skill scores and subjective comparisons are carried out for the Indian region during the south-west monsoon season (June to September). Relative biases and skill metrics are documented at all-India and sub-regional scales. In the gauge-based (land-only) category, Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE) and Global Precipitation Climatology Center (GPCC) datasets perform better relative to the others in terms of a variety of skill metrics. In the merged category, the Global Precipitation Climatology Project (GPCP) dataset is shown to perform better than the Climate Prediction Center Merged Analysis of Precipitation (CMAP) for the Indian monsoon in terms of various metrics, when compared with the IMD gridded data. Most of the datasets have difficulty in representing rainfall over orographic regions including the Western Ghats mountains, in north-east India and the Himalayan foothills. The wide range of skill scores seen among the datasets and even the change of sign of bias found in some years are causes of concern. This uncertainty between datasets is largest in north-east India. These results will help those studying the Indian monsoon region to select an appropriate dataset depending on their application and focus of research.
Resumo:
ERA-Interim reanalysis data from the past 35 years have been used with a newly-developed feature tracking algorithm to identify Indian monsoon depressions originating in or near the Bay of Bengal. These were then rotated, centralised and combined to give a fully three-dimensional 106-depression composite structure – a considerably larger sample than any previous detailed study on monsoon depressions and their structure. Many known features of depression structure are confirmed, particularly the existence of a maximum to the southwest of the centre in rainfall and other fields, and a westward axial tilt in others. Additionally, the depressions are found to have significant asymmetry due to the presence of the Himalayas; a bimodal mid-tropospheric potential vorticity core; a separation into thermally cold- (~–1.5K) and neutral- (~0K) cores near the surface with distinct properties; and that the centre has very large CAPE and very small CIN. Variability as a function of background state has also been explored, with land/coast/sea, diurnal, ENSO, active/break and Indian Ocean Dipole contrasts considered. Depressions are found to be markedly stronger during the active phase of the monsoon, as well as during La Niña. Depressions on land are shown to be more intense and more tightly constrained to the central axis. A detailed schematic diagram of a vertical cross-section through a composite depression is also presented, showing its inherent asymmetric structure.
Resumo:
The advance of the onset of the Indian monsoon is here explained in terms of a balance between the low-level monsoon flow and an over-running intrusion of mid-tropospheric dry air. The monsoon advances, over a period of about 6 weeks, from the south of the country to the northwest. Given that the low-level monsoon winds are westerly or southwesterly, and the midlevel winds northwesterly, the monsoon onset propagates upwind relative to midlevel flow, and perpendicular to the low-level flow, and is not directly caused by moisture flux toward the northwest. Lacking a conceptual model for the advance means that it has been hard to understand and correct known biases in weather and climate prediction models. The mid-level northwesterlies form a wedge of dry air that is deep in the far northwest of India and over-runs the monsoon flow. The dry layer is moistened from below by shallow cumulus and congestus clouds, so that the profile becomes much closer to moist adiabatic, and the dry layer is much shallower in the vertical, toward the southeast of India. The profiles associated with this dry air show how the most favourable environment for deep convection occurs in the south, and onset occurs here first. As the onset advances across India, the advection of moisture from the Arabian Sea becomes stronger, and the mid-level dry air is increasingly moistened from below. This increased moistening makes the wedge of dry air shallower throughout its horizontal extent, and forces the northern limit of moist convection to move toward the northwest. Wetting of the land surface by rainfall will further reinforce the north-westward progression, by sustaining the supply of boundary layer moisture and shallow cumulus. The local advance of the monsoon onset is coincident with weakening of the mid-level northwesterlies, and therefore weakened mid-level dry advection.
Resumo:
Satellite-based rainfall monitoring is widely used for climatological studies because of its full global coverage but it is also of great importance for operational purposes especially in areas such as Africa where there is a lack of ground-based rainfall data. Satellite rainfall estimates have enormous potential benefits as input to hydrological and agricultural models because of their real time availability, low cost and full spatial coverage. One issue that needs to be addressed is the uncertainty on these estimates. This is particularly important in assessing the likely errors on the output from non-linear models (rainfall-runoff or crop yield) which make use of the rainfall estimates, aggregated over an area, as input. Correct assessment of the uncertainty on the rainfall is non-trivial as it must take account of • the difference in spatial support of the satellite information and independent data used for calibration • uncertainties on the independent calibration data • the non-Gaussian distribution of rainfall amount • the spatial intermittency of rainfall • the spatial correlation of the rainfall field This paper describes a method for estimating the uncertainty on satellite-based rainfall values taking account of these factors. The method involves firstly a stochastic calibration which completely describes the probability of rainfall occurrence and the pdf of rainfall amount for a given satellite value, and secondly the generation of ensemble of rainfall fields based on the stochastic calibration but with the correct spatial correlation structure within each ensemble member. This is achieved by the use of geostatistical sequential simulation. The ensemble generated in this way may be used to estimate uncertainty at larger spatial scales. A case study of daily rainfall monitoring in the Gambia, west Africa for the purpose of crop yield forecasting is presented to illustrate the method.
Resumo:
There is a pressing need for good rainfall data for the African continent both for humanitarian and climatological purposes. Given the sparseness of ground-based observations, one source of rainfall information is Numerical Weather Prediction (NWP) model outputs. The aim of this article is to investigate the quality of two NWP products using Ethiopia as a test case. The two products evaluated are the ERA-40 and NCEP reanalysis rainfall products. Spatial, seasonal and interannual variability of rainfall have been evaluated for Kiremt (JJAS) and Belg (FMAM) seasons at a spatial scale that reflects the local variability of the rainfall climate using a method which makes optimum use of sparse gauge validation data. We found that the spatial pattern of the rainfall climatology is captured well by both models especially for the main rainy season Kiremt. However, both models tend to overestimate the mean rainfall in the northwest, west and central regions but underestimate in the south and east. The overestimation is greater for NCEP in Belg season and greater for ERA-40 in Kiremt Season. ERA-40 captures the annual cycle over most of the country better than NCEP, but strongly exaggerates the Kiremt peak in the northwest and west. The overestimation in Kiremt appears to have been reduced since the assimilation of satellite data increased around 1990. For both models the interannual variability is less well captured than the spatial and seasonal variability. Copyright © 2008 Royal Meteorological Society
North Atlantic weather regimes response to Indian-western Pacific Ocean warming: A multi-model study