75 resultados para Penalty-based function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flower and inflorescence reversion involve a switch from floral development back to vegetative development, thus rendering flowering a phase in an ongoing growth pattern rather than a terminal act of the meristem. Although it can be considered an unusual event, reversion raises questions about the nature and function of flowering. It is linked to environmental conditions and is most often a response to conditions opposite to those that induce flowering. Research on molecular genetic mechanisms underlying plant development over the last 15 years has pinpointed some of the key genes involved in the transition to flowering and flower development. Such investigations have also uncovered mutations which reduce floral maintenance or alter the balance between vegetative and floral features of the plant. How this information contributes to an understanding of floral reversion is assessed here. One issue that arises is whether floral commitment (defined as the ability to continue flowering when inductive conditions no longer exist) is a developmental switch affecting the whole plant or is a mechanism which assigns autonomy to individual meristems. A related question is whether floral or vegetative development is the underlying default pathway of the plant. This review begins by considering how studies of flowering in Arabidopsis thaliana have aided understanding of mechanisms of floral maintenance. Arabidopsis has not been found to revert to leaf production in any of the conditions or genetic backgrounds analysed to date. A clear-cut reversion to leaf production has, however, been described in Impatiens balsamina. It is proposed that a single gene controls whether Impatiens reverts or can maintain flowering when inductive conditions are removed, and it is inferred that this gene functions to control the synthesis or transport of a leaf-generated signal. But it is also argued that the susceptibility of Impatiens to reversion is a consequence of the meristem-based mechanisms controlling development of the flower in this species. Thus, in Impatiens, a leaf-derived signal is critical for completion of flowering and can be considered to be the basis of a plant-wide floral commitment that is achieved without accompanying meristem autonomy. The evidence, derived from in vitro and other studies, that similar mechanisms operate in other species is assessed. It is concluded that most species (including Arabidopsis) are less prone to reversion because signals from the leaf are less ephemeral, and the pathways driving flower development have a high level of redundancy that generates meristem autonomy even when leaf-derived signals are weak. This gives stability to the flowering process, even where its initiation is dependent on environmental cues. On this interpretation, Impatiens reversion appears as an anomaly resulting from an unusual combination of leaf signalling and meristem regulation. Nevertheless, it is shown that the ability to revert can serve a function in the life history strategy (perenniality) or reproductive habit (pseudovivipary) of many plants. In these instances reversion has been assimilated into regular plant development and plays a crucial role there.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A structure-function study was carried out to increase knowledge of how glycosidic linkages and molecular weights of carbohydrates contribute toward the selectivity of fermentation by gut bacteria. Oligosaccharides with maltose as the common carbohydrate source were used. Potentially prebiotic alternansucrase and dextransucrase maltose acceptor products were synthesized and separated into different molecular weights using a Bio-gel P2 column. These fractions were characterized by matrix-assisted laser desorption/ionization time-of-flight. Nonprebiotic maltooligosaccharides with degrees of polymerization (DP) from three to seven were commercially obtained for comparison. Growth selectivity of fecal bacteria on these oligosaccharides was studied using an anaerobic in vitro fermentation method. In general, carbohydrates of DP3 showed the highest selectivity towards bifidobacteria; however, oligosaccharides with a higher molecular weight (DP6-DP7) also resulted in a selective fermentation. Oligosaccharides with DPs above seven did not promote the growth of "beneficial" bacteria. The knowledge of how specific structures modify the gut microflora could help to find new prebiotic oligosaccharides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An unstructured mathematical model is proposed to describe the fermentation kinetics of growth, lactic acid production, pH and sugar consumption by Lactobacillus plantarum as a function of the buffering capacity and initial glucose concentration of the culture media. Initially the experimental data of L plantarum fermentations in synthetic media with different buffering capacity and glucose were fitted to a set of primary models. Later the parameters obtained from these models were used to establish mathematical relationships with the independent variables tested. The models were validated with 6 fermentations of L. plantarum in different cereal-based media. In most cases the proposed models adequately describe the biochemical changes taking place during fermentation and are a promising approach for the formulation of cereal-based probiotic foods. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Medication errors are an important cause of morbidity and mortality in primary care. The aims of this study are to determine the effectiveness, cost effectiveness and acceptability of a pharmacist-led information-technology-based complex intervention compared with simple feedback in reducing proportions of patients at risk from potentially hazardous prescribing and medicines management in general (family) practice. Methods: Research subject group: "At-risk" patients registered with computerised general practices in two geographical regions in England. Design: Parallel group pragmatic cluster randomised trial. Interventions: Practices will be randomised to either: (i) Computer-generated feedback; or (ii) Pharmacist-led intervention comprising of computer-generated feedback, educational outreach and dedicated support. Primary outcome measures: The proportion of patients in each practice at six and 12 months post intervention: - with a computer-recorded history of peptic ulcer being prescribed non-selective non-steroidal anti-inflammatory drugs - with a computer-recorded diagnosis of asthma being prescribed beta-blockers - aged 75 years and older receiving long-term prescriptions for angiotensin converting enzyme inhibitors or loop diuretics without a recorded assessment of renal function and electrolytes in the preceding 15 months. Secondary outcome measures; These relate to a number of other examples of potentially hazardous prescribing and medicines management. Economic analysis: An economic evaluation will be done of the cost per error avoided, from the perspective of the UK National Health Service (NHS), comparing the pharmacist-led intervention with simple feedback. Qualitative analysis: A qualitative study will be conducted to explore the views and experiences of health care professionals and NHS managers concerning the interventions, and investigate possible reasons why the interventions prove effective, or conversely prove ineffective. Sample size: 34 practices in each of the two treatment arms would provide at least 80% power (two-tailed alpha of 0.05) to demonstrate a 50% reduction in error rates for each of the three primary outcome measures in the pharmacist-led intervention arm compared with a 11% reduction in the simple feedback arm. Discussion: At the time of submission of this article, 72 general practices have been recruited (36 in each arm of the trial) and the interventions have been delivered. Analysis has not yet been undertaken.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The General Packet Radio Service (GPRS) has been developed for the mobile radio environment to allow the migration from the traditional circuit switched connection to a more efficient packet based communication link particularly for data transfer. GPRS requires the addition of not only the GPRS software protocol stack, but also more baseband functionality for the mobile as new coding schemes have be en defined, uplink status flag detection, multislot operation and dynamic coding scheme detect. This paper concentrates on evaluating the performance of the GPRS coding scheme detection methods in the presence of a multipath fading channel with a single co-channel interferer as a function of various soft-bit data widths. It has been found that compressing the soft-bit data widths from the output of the equalizer to save memory can influence the likelihood decision of the coding scheme detect function and hence contribute to the overall performance loss of the system. Coding scheme detection errors can therefore force the channel decoder to either select the incorrect decoding scheme or have no clear decision which coding scheme to use resulting in the decoded radio block failing the block check sequence and contribute to the block error rate. For correct performance simulation, the performance of the full coding scheme detection must be taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tunable radial basis function (RBF) network model is proposed for nonlinear system identification using particle swarm optimisation (PSO). At each stage of orthogonal forward regression (OFR) model construction, PSO optimises one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is computationally more efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given that the next and current generation networks will coexist for a considerable period of time, it is important to improve the performance of existing networks. One such improvement recently proposed is to enhance the throughput of ad hoc networks by using dual-hop relay-based transmission schemes. Since in ad hoc networks throughput is normally related to their energy consumption, it is important to examine the impact of using relay-based transmissions on energy consumption. In this paper, we present an analytical energy consumption model for dual-hop relay-based medium access control (MAC) protocols. Based on the recently reported relay-enabled Distributed Coordination Function (rDCF), we have shown the efficacy of the proposed analytical model. This is a generalized model and can be used to predict energy consumption in saturated relay-based ad hoc networks. This model can predict energy consumption in ideal environment and with transmission errors. It is shown that using a relay results in not only better throughput but also better energy efficiency. Copyright (C) 2009 Rizwan Ahmad et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel particle swarm optimisation (PSO) tuned radial basis function (RBF) network model is proposed for identification of non-linear systems. At each stage of orthogonal forward regression (OFR) model construction process, PSO is adopted to tune one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is often more efficient in model construction. The effectiveness of the proposed PSO aided OFR algorithm for constructing tunable node RBF models is demonstrated using three real data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An orthogonal forward selection (OFS) algorithm based on the leave-one-out (LOO) criterion is proposed for the construction of radial basis function (RBF) networks with tunable nodes. This OFS-LOO algorithm is computationally efficient and is capable of identifying parsimonious RBF networks that generalise well. Moreover, the proposed algorithm is fully automatic and the user does not need to specify a termination criterion for the construction process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An orthogonal forward selection (OFS) algorithm based on leave-one-out (LOO) criteria is proposed for the construction of radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines an RBF node, namely, its center vector and diagonal covariance matrix, by minimizing the LOO statistics. For regression application, the LOO criterion is chosen to be the LOO mean-square error, while the LOO misclassification rate is adopted in two-class classification application. This OFS-LOO algorithm is computationally efficient, and it is capable of constructing parsimonious RBF networks that generalize well. Moreover, the proposed algorithm is fully automatic, and the user does not need to specify a termination criterion for the construction process. The effectiveness of the proposed RBF network construction procedure is demonstrated using examples taken from both regression and classification applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified radial basis function (RBF) neural network and its identification algorithm based on observational data with heterogeneous noise are introduced. The transformed system output of Box-Cox is represented by the RBF neural network. To identify the model from observational data, the singular value decomposition of the full regression matrix consisting of basis functions formed by system input data is initially carried out and a new fast identification method is then developed using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator (MLE) for a model base spanned by the largest eigenvectors. Finally, the Box-Cox transformation-based RBF neural network, with good generalisation and sparsity, is identified based on the derived optimal Box-Cox transformation and an orthogonal forward regression algorithm using a pseudo-PRESS statistic to select a sparse RBF model with good generalisation. The proposed algorithm and its efficacy are demonstrated with numerical examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Importance of biomarker discovery in men’s cancer diagnosis and prognosis Each year around 10,000 men in the UK die as a result of prostate cancer (PCa) making it the 3rd most common cancer behind lung and breast cancer; worldwide more than 670,000 men are diagnosed every year with the disease [1]. Current methods of diagnosis of PCa mainly rely on the detection of elevated prostate-specific antigen (PSA) levels in serum and/or physical examination by a doctor for the detection of an abnormal prostate. PSA is a glycoprotein produced almost exclusively by the epithelial cells of the prostate gland [2]. Its role is not fully understood, although it is known that it forms part of the ejaculate and its function is to solubilise the sperm to give them the mobility to swim. Raised PSA levels in serum are thought to be due to both an increased production of PSA from the proliferated prostate cells, and a diminished architecture of affected cells, allowing an easier distribution of PSA into the wider circulatory system.