41 resultados para Pathogenic Microbiology
Resumo:
Objective To explore a possible correlation between endothelin 1 (ET-1), the most potent endothelium-derived contracting factor that modulates vascular smooth muscle tone, and arterial disease in patients with the antiphospholipid syndrome (APS). Methods Plasma levels of ET-1 were measured in APS patients with (n = 16) and without (n = 11) arterial thrombosis and in non-APS patients with arterial thrombosis (n = 9). In addition, steady-state prepro-ET-1 messenger RNA (mRNA) levels were determined in endothelial cells treated with a range of human monoclonal anticardiolipin antibodies (aCL) (as anti-β2-glycoprotein I antibodies) by semiquantitative 32P-dCTP-labeled reverse transcription-polymerase chain reaction. Results Compared with healthy controls, markedly increased plasma levels of ET-1 were found in APS patients with arterial thrombosis (2.00 ± 0.87 versus 0.96 ± 0.37 pg/ml; P = 0.0001) but not in other groups. Three human monoclonal aCL induced prepro-ET-1 mRNA levels significantly more than did control monoclonal antibody lacking aCL activity. Conclusion Plasma ET-1 levels correlated significantly with a history of arterial thrombosis in patients with APS. Prepro-ET-1 mRNA was induced by human monoclonal aCL in the in vitro experimental system. The induction of ET-1 by antiphospholipid antibodies might contribute to increased arterial tone, leading to vasospasm and, ultimately, to arterial occlusion.
Resumo:
Pathogenicity islands (PAIs) were first described in uropathogenic E. coli. They are now defined as regions of DNA that contain virulence genes and are present in the genome of pathogenic strains, but absent from or only rarely present in non-pathogenic variants of the same or related strains. Other features include a variable G+C content, distinct boundaries from the rest of the genome and the presence of genes related to mobile elements such as insertion sequences, integrases and transposases. Although PAIs have now been described in a wide range of both plant and animal pathogens it has become evident that the general features of PAIs are displayed by a number of regions of DNA with functions other than pathogenicity, such as symbiosis and antibiotic resistance, and the general term genomic islands has been adopted. This review will describe a range of genomic islands in plant pathogenic bacteria including those that carry effector genes, phytotoxins and the type III protein secretion cluster. The review will also consider some medically important bacteria in order to discuss the range, acquisition and stabilization of genomic islands.
Resumo:
Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.
Resumo:
In the early 2000s the threat of Highly Pathogenic Avian Influenza captured the attention of the world's media. While China is often considered the epicentre of the panzootic, few studies have explored coverage of this variant of avian flu in China. To address this issue, the authors examined the portrayal of Highly Pathogenic Avian Influenza across four Chinese newspapers at the local and national level. A textual analysis was performed on 160 articles across an eight-year period from 2001–2008. The study approach drew from Critical Discourse Analysis and Social Representation Theory. The headline analysis showed the extent that risk of the disease was subverted by the depiction of a strong and efficient ‘China’ that was a global leader in the fight against the disease. Ideological referents were called upon to stress teamwork in confronting the crisis. The diachronic analysis illustrated how the relationship between commercial interests, science and public health risks played out within the Chinese media.
Resumo:
Value chain studies, including production system and market chain studies, are essential to value chain analysis, which when coupled with disease risk analysis is a powerful tool to identify key constraints and opportunities for disease control based on risk management in a livestock production and marketing system. Several production system and market chain studies have been conducted to support disease control interventions in South East Asia. This practical aid summarizes experiences and lessons learned from the implementation of such value chain studies in South East Asia. Based on these experiences it prioritizes the required data for the respective purpose of a value chain study and recommends data collection as well as data analysis tools. This practical aid is intended as an adjunct to the FAO value chain approach and animal diseases risk management guidelines document. Further practical advice is provided for more effective use of value chain studies in South and South East Asia as part of animal health decision support.
Resumo:
Avian intestinal spirochetosis (AIS) results from the colonization of the ceca and colorectum of poultry by pathogenic Brachyspira species. The number of cases of AIS has increased since the 2006 European Union ban on the use of antibiotic growth promoters, which, together with emerging antimicrobial resistance in Brachyspira, has driven renewed interest in alternative intervention strategies. Probiotics have been reported as protecting livestock against infection with common enteric pathogens, and here we investigate which aspects of the biology of Brachyspira they antagonize in order to identify possible interventions against AIS. The cell-free supernatants (CFS) of two Lactobacillus strains, Lactobacillus reuteri LM1 and Lactobacillus salivarius LM2, suppressed the growth of Brachyspira pilosicoli B2904 in a pH-dependent manner. In in vitro adherence and invasion assays with HT29-16E three-dimensional (3D) cells and in a novel avian cecal in vitro organ culture (IVOC) model, the adherence and invasion of B. pilosicoli in epithelial cells were reduced significantly by the presence of lactobacilli (P < 0.001). In addition, live and heat-inactivated lactobacilli inhibited the motility of B. pilosicoli, and electron microscopic observations indicated that contact between the lactobacilli and Brachyspira was crucial in inhibiting both adherence and motility. These data suggest that motility is essential for B. pilosicoli to adhere to and invade the gut epithelium and that any interference of motility may be a useful tool for the development of control strategies.
Resumo:
Leptospira have a worldwide distribution and include important zoonotic pathogens yet diagnosis and differentiation still tend to rely on traditional bacteriological and serological approaches. In this study a 1.3 kb fragment of the rrs gene (16S rDNA) was sequenced from a panel of 22 control strains, representing serovars within the pathogenic species Leptospira interrogans, Leptospira borgpetersenii, and Leptospira kirschneri, to identify single nucleotide polymorphisms (SNPs). These were identified in the 5' variable region of the 16S sequence and a 181 bp PCR fragment encompassing this region was used for speciation by Denaturing High Performance Liquid Chromatography (D-HPLC). This method was applied to eleven additional species, representing pathogenic, non-pathogenic and intermediate species and was demonstrated to rapidly differentiate all but 2 of the non-pathogenic Leptospira species. The method was applied successfully to infected tissues from field samples proving its value for diagnosing leptospiral infections found in animals in the UK. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
A LightCycler(R) real-time PCR hybridization probe-based assay that detects a conserved region of the 16S rRNA gene of pathogenic but not saprophytic Leptospira species was developed for the rapid detection of pathogenic leptospires directly from processed tissue samples. In addition, a differential PCR specific for saprophytic leptospires and a control PCR targeting the porcine beta-actin gene were developed. To assess the suitability of these PCR methods for diagnosis, a trial was performed on kidneys taken from adult pigs with evidence of leptospiral infection, primarily a history of reproductive disease and serological evidence of exposure to pathogenic leptospires (n = 180) and aborted pig foetuses (n = 24). Leptospire DNA was detected by the 'pathogenic' specific PCR in 25 tissues (14%) and the control beta-actin PCR was positive in all 204 samples confirming DNA was extracted from all samples. No leptospires were isolated from these samples by culture and no positives were detected with the 'saprophytic' PCR. In a subsidiary experiment, the 'pathogenic' PCR was used to analyse kidney samples from rodents (n = 7) collected as part of vermin control in a zoo, with show animals with high microagglutination titres to Leptospira species, and five were positive. Fifteen PCR amplicons from 1 mouse, 2 rat and 14 pig kidney samples, were selected at random from positive PCRs (n = 30) and sequenced. Sequence data indicated L. interrogans DNA in the pig and rat samples and L. inadai DNA, which is considered of intermediate pathogenicity, in the mouse sample. The only successful culture was from this mouse kidney and the isolate was confirmed to be L. inadai by classical serology. These data suggest this suite of PCRs is suitable for testing for the presence of pathogenic leptospires in pig herds where abortions and infertility occur and potentially in other animals such as rodents. Crown Copyright (C) 2007 Published by Elsevier Ltd. All rights reserved.
Resumo:
Bifidobacterium longum bv. infantis CCUG 52486 was originally isolated from healthy elderly subjects and demonstrated to have particular ecological fitness and anti-pathogenic effects. Bifidobacteria are commonly associated with immunomodulatory properties, especially in older people, but this strain has not been investigated for effects on immune function. This study aimed to explore the immunomodulatory effects of this novel probiotic, compared with three commercial strains, B. longum SP 07/3, L. rhamnosus GG (L.GG) and L. casei Shirota (LcS). Human peripheral blood mononuclear cells (PBMCs) were isolated from fasting blood of young or older volunteers and exposed to probiotic strains or Con A. NK activity and activation, and cytokine release were enhanced by all probiotics with strain-specificities. The effect of B. infantis on NK activity was influenced by ageing. Except for L.GG, probiotics increased IFN-γ production to a much greater degree in young subjects, and increased IL-6 production to a much greater degree in older subjects. Based on IL-10/IL-12 ratios, B. infantis resulted in the most anti-inflammatory profile of all of the probiotics. These results suggest that B. infantis CCUG 52486 has strong immunomodulatory potential compared with well-known commercial strains, and that the immune response to probiotics may be influenced by ageing.
Resumo:
Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in modulation of gene expression, although it remains possible that this protein can influence mRNA expression under pathogenic cicumstances.
Resumo:
Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::str(r) null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::str(r). Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Sections of kidney, trachea, ileum, colon, rectum and rumen were removed at post mortem from a neonatal calf and, with the exception of the rumen, primary cell lines were established for each of the cell types. The adherence of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, enteropathogenic E. coli (EPEC) serotype O111, E. coli K12 (a laboratory adapted non-pathogenic strain) and Salmonella enterica serotype Typhimurium was assayed on each cell type. For all adherence assays on all cell lines, EHEC O157:H7 adhered to a significantly greater extent than the other bacteria. S. Typhimurium and EPEC O111 adhered to a similar extent to one another, whereas E. coli K12 was significantly less adherent by 100-fold. In all cell types, > 10% of adherent S. Typhimurium bacteria invaded, whereas c. 0.01-0.1% of adherent EHEC O157:H7 and EPEC O111 bacteria invaded, although they are regarded as non-invasive. EHEC O157 generated actin re-arrangements in all cell types as demonstrated by fluorescent actin staining (FAS) under densely packed bacterial micro-colonies. EPEC O111 readily generated the localised adherent phenotype on bovine cells but generated only densely packed micro-colonies on HEp-2 cells. The intensity of actin re-arrangements induced in bovine cells by EPEC O111 was less than that induced by EHEC O157:H7. The intimate attachment on all cell types by both EHEC O157:H7 and EPEC O111 was clearly demonstrated by scanning electron microscopy.
Resumo:
Cost effective control of avian diseases and food borne pathogens remains a high priority for all sectors of the poultry industry with cleansing and disinfection, vaccination and competitive exclusion approaches being used widely. Previous studies showed that Bacillus subtilis PY79(hr) was an effective competitive exclusion agent for use in poultry to control avian pathogenic Escherichia coli serotype O78:K80. Here we report experiments that were undertaken to test the efficacy of B. subtilis PY79(hr) in the control of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. To do this, 1-day-old and 20-day-old specific pathogen free (SPF) chicks were dosed with a suspension of B. subtilis spores prior to challenge with S. Enteritidis (S1400) and C. perfringens, respectively. For both challenge models, a single oral inoculum of 1 x 10(9) spores given 24 h prior to challenge was sufficient to suppress colonisation and persistence of both S. Enteritidis and C perfringens. In particular, the faecal shedding of S. Enteritidis, as measured by a semi-quantitative cloacal swabbing technique, was reduced significantly for the 36 days duration of the experiment. B. subtilis persisted in the intestine although with decreasing numbers over the same period. These data add further evidence that B. subtilis spores may be effective agents in the control of avian diseases and food borne pathogens.
Resumo:
The lipopolysaccharide of Salmonella and other Gram negative pathogenic species has been implicated as a major virulence determinant and in this study we report the role of LPS of S. Enteritidis in the colonisation and persistent gastrointestinal infection of young poultry. The gene encoding the unique O-antigen ligase, waaL, was mutated by insertional inactivation in a well characterised S. Enteritidis strain, S1400/94. The waaL mutant, designated PCP, produced rough colonies on agar medium, did not agglutinate O9 antiserum, did not produce an LPS ladder on silver stained gels and was serum sensitive. PCP and a nalidixic acid marked derivative of S1400/94 (S1400/94 Nal(r)) were used to orally challenge young chicks, separately and together in competitive index experiments. At post-mortem examination of 1-day-old chicks challenged S1400/94 Nal(r) and PCP separately there were no significant differences in the numbers of S1400/94 Nal(r) and PCP bacteria in tissues sampled on days 1, 2. and 5. By day 42 after challenge S1400/94 Nal(r) bacteria were recovered in significantly higher numbers than PCP from the caecal contents (P < 0.001). In competitive index studies in the 1-day-old chick PCP colonised, invaded and persisted in lower numbers than S1400/94 Nal(r). In 4-week-old chicks challenged separately, PCP bacteria were recovered from all tissues examined in significantly lower numbers than S1400/94 Nal(r). In competitive index experiments in 4-week-old chicks, PCP was not detected at any site and at any time point. Therefore, the O-antigen of S. Enteritidis plays art important role in poultry infections although this role is less important in the newly hatched chick. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.