96 resultados para Particle vaccine
Observations of the depth of ice particle evaporation beneath frontal cloud to improve NWP modelling
Resumo:
The evaporation (sublimation) of ice particles beneath frontal ice cloud can provide a significant source of diabatic cooling which can lead to enhanced slantwise descent below the frontal surface. The strength and vertical extent of the cooling play a role in determining the dynamic response of the atmosphere, and an adequate representation is required in numerical weather-prediction (NWP) models for accurate forecasts of frontal dynamics. In this paper, data from a vertically pointing 94 GHz radar are used to determine the characteristic depth-scale of ice particle sublimation beneath frontal ice cloud. A statistical comparison is made with equivalent data extracted from the NWP mesoscale model operational at the Met Office, defining the evaporation depth-scale as the distance for the ice water content to fall to 10% of its peak value in the cloud. The results show that the depth of the ice evaporation zone derived from observations is less than 1 km for 90% of the time. The model significantly overestimates the sublimation depth-scales by a factor of between two and three, and underestimates the local ice water content by a factor of between two and four. Consequently the results suggest the model significantly underestimates the strength of the evaporative cooling, with implications for the prediction of frontal dynamics. A number of reasons for the model discrepancy are suggested. A comparison with radiosonde relative humidity data suggests part of the overestimation in evaporation depth may be due to a high RH bias in the dry slot beneath the frontal cloud, but other possible reasons include poor vertical resolution and deficiencies in the evaporation rate or ice particle fall-speed parametrizations.
Resumo:
In April–July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rainforest" (OP3) project. Fluxes and concentrations of trace gases and particles were made from and above the rainforest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest site was not significantly impacted by anthropogenic pollution, and this is confirmed by satellite retrievals of NO2 and HCHO. The dominant modulators of atmospheric chemistry at the rainforest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NOx volume mixing ratio (~100 pptv/pptv), current chemical models suggest that daytime maximum OH concentrations should be ca. 105 radicals cm−3, but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements that suggest that an unexplained source of OH must exist above tropical rainforest and we continue to interrogate the data to find explanations for this.
Resumo:
The application of particle filters in geophysical systems is reviewed. Some background on Bayesian filtering is provided, and the existing methods are discussed. The emphasis is on the methodology, and not so much on the applications themselves. It is shown that direct application of the basic particle filter (i.e., importance sampling using the prior as the importance density) does not work in high-dimensional systems, but several variants are shown to have potential. Approximations to the full problem that try to keep some aspects of the particle filter beyond the Gaussian approximation are also presented and discussed.
Resumo:
This paper presents a first attempt to estimate mixing parameters from sea level observations using a particle method based on importance sampling. The method is applied to an ensemble of 128 members of model simulations with a global ocean general circulation model of high complexity. Idealized twin experiments demonstrate that the method is able to accurately reconstruct mixing parameters from an observed mean sea level field when mixing is assumed to be spatially homogeneous. An experiment with inhomogeneous eddy coefficients fails because of the limited ensemble size. This is overcome by the introduction of local weighting, which is able to capture spatial variations in mixing qualitatively. As the sensitivity of sea level for variations in mixing is higher for low values of mixing coefficients, the method works relatively well in regions of low eddy activity.
Resumo:
We previously found that dried live bacteria of a vaccine strain can be temporarily sensitive to bile acids and suggested that Bile Adsorbing Resins (BAR) can be used in oral vaccine tablets to protect dried bacteria from intestinal bile. Here, we report a quantitative analysis of the ability of BAR to exclude the dye bromophenol blue from penetrating into matrix tablets and also sections of hard capsule shells. Based on this quantitative analysis, we made a fully optimised formulation, comprising 25% w/w of cholestyramine in Vcaps™ HPMC capsules. This gave effectively 100% protection of viability from 4% bile, with 4200-fold more live bacteria recovered from this formulation compared to unprotected dry bacteria. From the image analysis, we found that the filler material or compaction force used had no measurable effect on dye exclusion but did affect the rate of tablet hydration. Increasing the mass fraction of BAR gave more exclusion of dye up to 25% w/w, after which a plateau was reached and no further dye exclusion was seen. More effective dye exclusion was seen with smaller particle sizes (i.e. cholestyramine) and when the BAR was thoroughly dried and disaggregated. Similar results were found when imaging dye penetration into capsule sections or tablets. The predictions of the dye penetration study were tested using capsules filled with dried attenuated Salmonella vaccine plus different BAR types, and the expected protection from bile was found, validating the imaging study. Surprisingly, depending on the capsule shell material, some protection was given by the capsule alone without adding BAR, with Vcaps™ HPMC capsules providing up to 174-fold protection against 1% bile; faster releasing Vcaps Plus™ HPMC capsules and Coni Snap™ gelatin capsules gave less protection.
Resumo:
Live bacterial vaccines have great promise both as vaccines against enteric pathogens and as heterologous antigen vectors against diverse diseases. Ideally, room temperature stable dry formulations of live bacterial vaccines will allow oral vaccination without cold-chain storage or injections. Attenuated Salmonella can cross the intestinal wall and deliver replicating antigen plus innate immune activation signals directly to the intestinal immune tissues, however the ingested bacteria must survive firstly gastric acid and secondly the antimicrobial defences of the small intestine. We found that the way in which cells are grown prior to formulation markedly affects sensitivity to acid and bile. Using a previously published stable storage formulation that maintained over 10% viability after 56 days storage at room temperature, we found dried samples of an attenuated S. typhimurium vaccine lost acid and bile resistance compared to the same bacteria taken from fresh culture. The stable formulation utilised osmotic preconditioning in defined medium plus elevated salt concentration to induce intracellular trehalose accumulation before drying. Dried bacteria grown in rich media without osmotic preconditioning showed more resistance to bile, but less stability during storage, suggesting a trade-off between bile resistance and stability. Further optimization is needed to produce the ultimate room-temperature stable oral live bacterial vaccine formulation.
Resumo:
The paper explores the low uptake of livestock vaccination among poor farming communities in Bolivia utilising core elements of the original innovation diffusion theory. Contrary to the recent literature, we found that vaccination behaviour was strongly Linked to social and cultural, rather than economic, drivers. While membership in a group increased uptake, the 'hot' and 'cold' distinctions which dictate health versus illness within Andean cosmology also played a role, with vaccination viewed as a means of addressing underlying imbalances. We concluded that uptake of livestock vaccination was unlikely to improve without knowledge transfer that acknowledges local. epistemologies for Livestock disease. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Maize silage nutritive quality is routinely determined by near infrared reflectance spectroscopy (NIRS). However, little is known about the impact of sample preparation on the accuracy of the calibration to predict biological traits. A sample population of 48 maize silages representing a wide range of physiological maturities was used in a study to determine the impact of different sample preparation procedures (i.e., drying regimes; the presence or absence of residual moisture; the degree of particle comminution) on resultant NIR prediction statistics. All silages were scanned using a total of 12 combinations of sample pre-treatments. Each sample preparation combination was subjected to three multivariate regression techniques to give a total of 36 predictions per biological trait. Increased sample preparations procedure, relative to scanning the unprocessed whole plant (WP) material, always resulted in a numerical minimisation of model statistics. However, the ability of each of the treatments to significantly minimise the model statistics differed. Particle comminution was the most important factor, oven-drying regime was intermediate, and residual moisture presence was the least important. Models to predict various biological parameters of maize silage will be improved if material is subjected to a high degree of particle comminution (i.e., having been passed through a 1 mm screen) and developed on plant material previously dried at 60 degrees C. The extra effort in terms of time and cost required to remove sample residual moisture cannot be justified. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Wolbachia are bacteria present within the tissues of most filarial nematodes. Filarial nematode survival is known to be affected by immune responses generated during filarial nematode infection and immune responses to Wolbachia can be found in different species harbouring filarial nematode infections, including humans. Using the rodent filarial model Litomosoides sigmodontis, we show that pre-exposure to wolbachia surface protein in a Th1 context (but not in a Th2-context) enhances worm survival on subsequent challenge. This study suggests that despite abundant evidence that pro-inflammatory reactions to the endosymbiont have detrimental effects on the both the nematode and mammalian host, they may under some circumstances be beneficial to the nematode.